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Abstract.—The state of Florida, USA, has more introduced herpetofauna than any other governmental region on Earth.  

Four species of nonnative crocodilians have been introduced to Florida (all since 1960), one of which is established.  

Between 2000–2014 we field-collected three nonnative crocodilians in Miami-Dade County, Florida, and one in Hendry 

County, Florida.  We used DNA barcoding and molecular phylogenetics to determine species identification and native 

range origin.  Also, we described diet, movement, and growth for one crocodile.  Our molecular analyses illustrated that 

two of the crocodiles we collected are most closely related to Nile Crocodiles (Crocodylus niloticus) from South Africa, 

suggesting this region as a source population. We, thus, documented the first known introduction of C. niloticus in 

Florida.  Two, and possibly three of the introduced crocodiles shared the same haplotype, suggesting they are likely from 

the same introduction pathway or source.  One animal was captured, measured, marked, and released, then recaptured 2 

y later allowing us to calculate growth rate (40.5 cm/y) and movement.  The most likely route of travel by waterway (i.e., 

canal) illustrates that this animal traveled at least 29 km from its original capture site.  One crocodile escaped from a 

facility in Hendry County, Florida, and survived in 1,012 ha of semi-wild habitat for three to four years, confirming that 

this species can survive in southern Florida. 
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INTRODUCTION 

 

Florida has the most introduced (stages 2–5 following 

Colautti and MacIsaac 2004) amphibians and reptiles in 

the world (Krysko et al. 2011).  Four species of 

nonnative crocodilians have been introduced to Florida 

since 1960: Slender-snouted Crocodile (Mecistops 

cataphractus [Cuvier 1824]), Cuvier’s Dwarf Caiman 

(Paleosuchus palpebrosus [Cuvier 1807]), Schneider’s 

Smooth-fronted Caiman (Paleosuchus trigonatus 

[Schneider 1801]), and Spectacled Caiman (Caiman 

crocodilus [Linnaeus 1758]; Ellis 1980; Krysko et al. 

2011).  Caiman crocodilus is the only established (stage 

3 or higher) nonnative crocodilian (Ellis 1980), while the 

remaining three have only achieved stage 2 introductions 

(Krysko et al. 2011).  Florida also has two native 

crocodilians: the American Alligator (Alligator 

mississippiensis Daudin 1802) and American Crocodile 

(Crocodylus acutus Cuvier 1807; Hornaday 1875; 

Clarke 1888; Reese 1907; Mazzotti et al. 2009), both of 

which are protected species. 

The Nile Crocodile (Crocodylus niloticus Laurenti 

1768) is a large species capable of reaching 6 m in 

length (Fergusson 2010).  It is known to prey upon 

crustaceans, arachnids, insects, fishes, amphibians, 

reptiles, birds, and mammals including humans (Vansleb 

1678; Cott 1961; Wallace and Leslie 2008).  This 

species was considered to occupy most of sub-Saharan 

Africa and parts of the southern Mediterranean coast; 

however, recent phylogenetic analyses provided 

evidence for a revised taxonomy (Hekkala et al. 2011).  

Nestler (2012) found high variation in C. niloticus skulls 

using geometric morphometrics, supporting the notion of 

multiple lineages within C. niloticus.  Crocodylus 

niloticus sensu stricto occurs mostly in the eastern half 

of the continent from South Africa northward, including 

Madagascar, to Egypt and, formerly, eastward to Israel 

(Vansleb 1678; Laurenti 1768; Pooley and Gans 1976; 

Glaw and Vences 2007; Hekkala et al. 2011), whereas 
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the taxonomically resurrected West African Crocodile 

(Crocodylus suchus Geoffroy-Saint-Hillaire 1807) 

occurs from Senegal and Mauritania in western Africa 

southeastward to Uganda and the Democratic Republic 

of Congo (Schmitz et al. 2003; Hekkala et al. 2011; 

Shirley et al. 2015).   

DNA barcoding is a molecular technique wherein a 

short fragment of DNA, typically mitochondrial 

cytochrome c oxidase subunit I (COI), is used to identify 

individuals to species (Hebert et al. 2003a, b).  DNA 

barcoding has been demonstrated to be an effective 

technique for identifying species of the cryptic 

Crocodylus niloticus complex (Eaton et al. 2010; Shirley 

et al. 2015).  We used DNA barcoding to confirm 

species identity of two presumed Crocodylus niloticus as 

stage 2 introduced species in southern Florida, USA.  

Additionally, we employed molecular phylogenetic 

methods to identify the likely native range origin of 

introduced individuals.  Finally, we provided data on 

movement, growth, and foraging to comment on survival 

of Crocodylus niloticus in Florida.   

 

MATERIALS AND METHODS 

 

Specimen acquisition.—We responded to reports from 

private citizens of unusual looking crocodilians in 

southern Florida.  We conducted subsequent daytime 

visual and nighttime spotlight surveys to find and 

capture potential nonnative crocodiles.  We captured 

animals by hand or with a harpoon in combination with 

nets to corral an animal into a small section of man-

made canal.  Upon capture, we measured snout-vent 

length (SVL) from the anterior snout edge to posterior 

end of the cloaca, total length (TL) from anterior snout 

edge to the posterior tip of the tail, head length (HL) 

from anterior snout edge to the posterior edge of the 

cranial table, tail girth (TG) as circumference of tail 

immediately posterior to cloaca, and mass of each 

individual.  We determined sex by manually probing the 

cloaca.  We tail notched each individual for later 

identification and stored the clipped tail scutes in 

Drierite anhydrous calcium sulfate for later molecular 

analysis.  We performed gastric lavage to obtain stomach 

contents (Fitzgerald 1989).  For one crocodile that was 

captured, released, and recaptured due to permitting 

guidelines, we measured distance between primary and 

secondary capture sites using an image from Google 

Earth.  We deposited all photographs and tissues as 

vouchers in the Division of Herpetology, Florida 

Museum of Natural History, University of Florida (UF-

Herpetology). 

 

Laboratory techniques.—We extracted DNA from 

scute tissue samples using ZR Genomic DNA™-Tissue 

Microprep Kit (Zymo Research, LLC, Irvine, California, 

USA).  We used primers FishR2_t1 and FishF2_t1 

(Ivanova et al. 2007; Eaton et al. 2010; Shirley et al. 

2015) to amplify and sequence a 565 base pair (bp) 

fragment of the COI mtDNA gene for DNA barcoding.  

Following Hekkala et al. (2011), we used 4,137 bp for 

phylogenetic analyses, including the mtDNA 12S rRNA 

(421 bp), control region/d-loop (735 bp), NADH 

nicotinamide adenine dinucleotide dehydrogenase 

subunit 4 (ND4; 860 bp) region, and the nDNA 

recombination activating gene 1 (RAG1; 714 bp), 

ribosomal protein S6 (693 bp), and tropomyosin intron 

(714 bp; see Table 1 for primers).  For all molecular 

markers,  PCR was conducted in 25 l reactions: 9.5 l 

H2O, 12.5 l GoTaq
® 

Master Mix (Promega Corp, 

Madison, Wisconsin, USA), 1.0 l each primer (10 M), 

and 1.0 l DNA template. PCR parameters included 

initial denaturing at 95° C for 15 min, followed by 35 

amplification cycles: denaturing at 94° C for 30 s, 

annealing at 57° C for 90 s, and extension at 72° C for 

60 s, followed by a final extension at 72° C for 10 m 

(Shirley et al. 2015).  We verified PCR products by 

visualization on a 1% agarose gel with GelRed
TM

 

staining (Biotium Inc., Hayward, California, USA).  We 

assembled and edited sequence files generated by the 

automated sequencer (Genomics Division, 

Interdisciplinary Center for Biotechnology Research, 

University of Florida, Gainesville, Florida, USA) as 

necessary using Geneious (ver. 6.1, Biomatters Ltd., 

Auckland, New Zealand). 

 

DNA barcoding.—We downloaded reference COI 

sequence data for Crocodylus from GenBank (Shirley et 

al. 2015; Table 1) and aligned them with sequences 

generated as part of this study using Geneious.  We 

identified our introduced crocodiles to species by 

visually matching fixed, segregating nucleotide 

positions, and unique COI haplotypes to the reference 

sequences.  

  
Phylogenetic analyses.—We downloaded reference 

DNA sequence data for 35 Crocodylus niloticus and C. 

suchus, and one each of C. acutus, C. moreletii, C. 

rhombifer, Mecistops cataphractus, and Osteolaemus 

tetraspis to be used as outgroups from the Dryad data 

repository (doi:10.5061/dryad.s1m9h; Table 2).  We 

aligned these reference sequences with our sequences 

from introduced crocodiles generated in this study.   

Phylogenetic relationships were estimated using both 

maximum likelihood (ML) and Bayesian inference (BI) 

methods. 

 We implemented ML in the RAxML-HPC BlackBox 

(Stamatakis 2006; Stamatakis et al. 2008) on the 

CIPRES Science Gateway (Miller et al. 2010) using the 

General Time Reversible model of nucleotide evolution 

with gamma distributed rate heterogeneity (GTR + Γ).  

We implemented BI in BEAST (ver. 1.8; Drummond 

and   Rambaut   2007)     on     the     UF-HPC     Galaxy     
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TABLE 1.  Primers (5’–3’ direction) used to sequence crocodilians for mitochondrial DNA (mtDNA) cytochrome oxidase c subunit I (COI), 

12S ribosomal (12S), control region (d-loop), nicotinamide adenine dinucleotide dehydrogenase subunit 4 (ND4) region, and nuclear DNA 
(nDNA) recombination activating gene 1 (RAG1), ribosomal protein S6, and introns for tropomyosin. 
 

 

 

Gene Region DNA Marker Primer Name Primer Sequence Source 

COI mtDNA FishF2_t1 CGA-CTA-ATC-ATA-AAG-ATA-TCG-GCA-C Ivanova et al. (2007) 

COI mtDNA FishR2_t1 ACT-TCA-GGG-TGA-CCG-AAG-AAT-CAG-AA Ivanova et al. (2007) 

12S mtDNA 12s183 TTG-CCC-TAA-GCA-GCC-TGT-AT Hekkala et al. (2011) 

12S mtDNA 12s375 CCG-TCT-TTG-ACA-GTC-CTG-GT Hekkala et al. (2011) 

Control Region mtDNA L15463 CGC-TGG-CCT-TGT-AAG-ACA-GA Hekkala (2004) 

Control Region mtDNA H16258 CAC-TAA-AAT-TAC-AGA-AAA-GCC-G Hekkala (2004) 

ND4 mtDNA F2 AAA-ACC-TAA-ACC-TGC-TMC-AAT-G Hekkala et al. (2011) 

ND4 mtDNA Leu CAT-TAC-TTT-TAC-TTG-GAT-TTG-CAC Hekkala et al. (2011) 

RAG1 nDNA F AGC-ACA-AAG-CTT-CTT-GCA-GTT Hekkala et al. (2011) 

RAG1 nDNA R GGA-CAG-AAG-GTG-TTG-TCT-TGG-T Hekkala et al. (2011) 

S6 nDNA F ATC-AGT-GGT-GGC-AAT-GAC-AA Hekkala et al. (2011) 

S6 nDNA R TCT-TGC-CCT-CTT-TGT-TCA-GG Hekkala et al. (2011) 

Tropomyosin nDNA F GAG-TTG-GAT-CGS-GCT-CAG-GAG-CG Friesen et al. (1999) 

Tropomyosin nDNA R CGG-TCA-GCC-TCY-TCM-GCA-ATG-TGC-T Friesen et al. (1999) 

server (http://hpc.ufl.edu; Giardine et al. 2005; 

Blankenberg et al. 2010; Goecks et al. 2010).   We  

performed  a  mixed-model analysis to infer trees and 

assess nodal support using models incorporating 

evolutionary information specific to each gene.  We 

selected the most likely models of nucleotide substation 

in jModelTest based on Akaike Information Criterion 

(AIC) scores (ver. 2.1.4; Guindon and Gascuel 2003; 

Darriba et al. 2012).  The best fit models for each locus 

were: GTR + Γ for 12S, Hasegawa, Kishino and Yano 

with gamma distributed rate heterogeneity and 

proportion of invariant sites (HKY + I + Γ) for control 

region, GTR + I for ND4, and HKY for RAG1, S6, and 

tropomyosin. 

We used an uncorrelated lognormal relaxed clock, 

constant population size, estimated base frequencies, 

randomly generated starting tree, and normal relaxed 

clock mean (ucld.mean) priors.  We performed two 

independent Markov Chain Monte Carlo (MCMC) runs, 

each with three heated and one cold chain, for 40 million 

generations sampling every 1,000
th

 generation.  We 

independently analyzed both MCMC runs for posterior 

convergence using Tracer (ver. 1.6) where ESS values > 

200 and split standard deviation less than 0.005 for ˗lnL 

tree values among chains indicated stationarity was 

achieved.  We discarded all trees sampled in the first five 

million generations (i.e., prior to stationarity) as burn-in 

and combined the remaining trees from both runs using 

LogCombiner (ver. 1.8).  We generated the maximum 

clade credibility (MCC) tree with mean heights using 

TreeAnnotator (ver. 1.8) and visualized the phylogenetic 

hypothesis with posterior probabilities using FigTree 

(ver. 1.4.2). 

RESULTS 

 

Nonnative crocodiles.—The first crocodile 

(approximately 1.2–1.5 m TL; photographic voucher 

UF-Herpetology 175632) in this study escaped from its 

enclosure in 1996 or 1997 at Billie Swamp Safari, 

Seminole Reservation, Hendry County (26.330348°N, 

81.055936°W; datum WGS84; Jonathan Vasquez, pers. 

comm.).  This crocodile was somewhat contained by a 

perimeter fence within the 1,012 ha property.  In 2000, it 

was finally recaptured by Billie Swamp Safari staff and 

measured 3 m TL.  We were unable to secure a tissue 

sample from this crocodile.   

The second crocodile (UF-Herpetology 175743), a 

hatchling, was captured by Robert Freer on 14 April 

2009 on the house porch of a resident at 24800 SW 193 

Avenue, Miami, Miami-Dade County (25.534833°N, 

80.504653°W), and subsequently transported to 

Kliebert’s Turtle and Alligator Farm in Hammond, 

Louisiana.  In June 2015 we acquired a tissue sample 

from this crocodile.  The third crocodile (UF-

Herpetology 165995) was a female captured on 27 

October 2011 at the Preston B. Bird/Mary Heinlein Fruit 

and Spice Park, Homestead, Miami-Dade County 

(25.53385°N 80.49348°W; datum WGS84; Fig. 1), and 

subsequently kept in captivity by JAW.  It measured 

57.7 cm SVL, 115.2 cm TL, 15.3 cm HL, and weighed 

4.4 kg. 

The fourth crocodile (UF-Herpetology 173082) was a 

female (86.3 cm TL) captured on 13 March 2012 in a 

canal in Homestead, Miami-Dade County (25.50632°N, 

80.47343°W).  This crocodile was released and 

recaptured 9 March  2014  in  Everglades  National  Park  
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TABLE 2.  Voucher and GenBank accession numbers for the two introduced Nile Crocodiles (Crocodylus niloticus) used in this study for 

molecular analyses.  The comparative DNA sequences were taken from Hekkala et al. (2011).  Individual UF 165995 was found at 24800 SW 
187 Avenue, Miami, Miami-Dade County, Florida, USA, and UF 173082 was found at Everglades National Park, SW 237 Avenue, Miami, 

Miami-Dade County, Florida, USA. 
 

Voucher CO1 12S D-loop ND4 RAG1 S6 Tropomyosin 

UF 165995 KP297880 KP297878 KP297882 KP297884 KP297886 KP297888 KP297876 

UF 173082 KP297881 KP297879 KP297883 KP297885 KP297887 KP297889 KP297877 

 

 

 

(ENP; 25.61707°N, 80.5753°W; U.S. National Park 

Service, unpubl. report), and measured 23.6 cm HL, 88.0 

cm SVL, 167.9 cm TL, 43.6 cm TG, and weighed 17.0 

kg.  Its stomach contained remains of a Largemouth 

Bass (Micropterus salmoides).  Straight-line distance 

over land between primary and secondary capture sites 

was 16 km; however, the most likely route of travel by 

canal was 29 km. 

 

Genetics and phylogenetic analyses.—We 

successfully sequenced DNA for all seven loci from the 

third and fourth nonnative crocodiles (UF-Herpetology 

165995 and UF-Herpetology 173082).  These two 

individuals shared the same haplotype for all loci.  We 

successfully sequenced DNA for ND4, RAG1, S6, and 

Trop for the second crocodile (UF-Herpetology 175743),  

 

 

 
 

FIGURE 1. Capture locations of Nile Crocodiles (Crocodylus 
niloticus) in southern Florida, USA, 2000–2014.   

which shared the same haplotypes as the two crocodiles 

above; however, sequences for CO1, dloop, and 12S 

were unclean and too difficult to read after multiple 

DNA isolations and; thus, this individual was removed 

from subsequent analyses.  

Nonnative crocodiles UF-Herpetology 165995 and 

UF-Herpetology 173082 exhibited C. niloticus 

haplotypes and shared diagnostic single nucleotide 

polymorphisms (SNP) at 7 sites unique to previously 

published COI sequences for this species.  The ML and 

BI analyses resulted in a tree topology congruent with 

that of Hekkala et al. (2011; Fig. 2).  Both UF-

Herpetology 165995 and UF-Herpetology 173082 

aligned most closely with an individual from South 

Africa. 

  

DISCUSSION 

 

This study provides the first verified vouchered 

records of introduced Crocodylus niloticus in Florida, 

USA.  Our DNA barcoding confirms that two of our 

samples (UF-Herpetology 165995 and UF-Herpetology 

173082) are C. niloticus and not the recently resurrected 

C. suchus.  Our phylogenetic analyses suggest that these 

two samples are also most closely related to the native 

range origin of South Africa.  Because these two 

samples are genetically identical for all loci sequenced in 

this study, it suggests that they likely came from the 

same introduction pathway source.  Shirley et al. (2015) 

suggested that 95% of all sampled C. niloticus sensu lato 

in captivity in the USA, including captive collections in 

southern Florida, were C. suchus.  Thus, our crocodiles 

either come from a different source or one of these 

sources had or have different animals than those that 

were sampled by Shirley et al. (2015).  Over the last 

decade several large groups of C. niloticus have been 

imported from South Africa and Madagascar for both 

zoological display (e.g., Disney’s Animal Kingdom) and 

the pet trade, with the latter being the most likely 

introduction pathway for these individuals.  Nonetheless, 

our study reinforces the use of molecular data in 

positively identifying introduced species and 

determining their native range origin when a published 

reference data set is available.  Both are critical pieces of 

information for the management of introduced, and 

potentially invasive, species.   
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FIGURE 2.  Maximum likelihood phylogeny for Nile (Crocodylus niloticus) and West African (C. suchus) crocodiles, including two specimens 

(UF-Herpetology 165995 and 173082; highlighted in red) introduced to Florida, USA. Note that values (≥ 70%) above major nodes represent 

bootstrap support, and values (≥ 95%) below major nodes represent posterior probabilities from the Bayesian inference phylogeny. Inset 
photograph of the late Rafael Crespo holding UF-Herpetology 173082 after its capture in Everglades National Park on 9 March 2014. (Inset 

photographed by Michael R. Rochford). 

 
Our recapture data indicate that Crocodylus niloticus 

can survive in the wild in southern Florida for nearly two 

years.  Crocodylus niloticus sensu lato (UF-Herpetology 

175632) from Hendry County survived for 4–5 y in the 

wild, and confirmed C. niloticus UF-Herpetology 

173082 from Miami-Dade County survived for 2 y.  

Closely related Crocodylus suchus at an attraction in 

Homestead, Miami-Dade County, are kept outdoors 

year-round without artificial heat sources, including 

during a record prolonged cold period (Mario Aldecoa, 

pers. comm.) that killed many native C. acutus, as well 

as manatees, fishes, and nonnative pythons (Hallac et al. 

2010; Mazzotti et al. 2011).   

Survival in C. niloticus is size-related (Hutton 1987) 

and UF-Herpetology 173082 was introduced and able to 

survive at a size when it was most vulnerable.  This 

animal grew remarkably quickly, almost doubling in size 

in 2 y.  Hatchlings from Ngezi, Zimbabwe, grew more 

quickly at a rate of 31.7 cm/y and reached 90 cm TL in 5 

y (Hutton 1987).  Our crocodile captured in ENP grew at 

a rate of 40.5 cm/y, 28% faster than wild C. niloticus 

hatchlings from certain parts of their native range 

(Hutton 1987). 

Juvenile native Crocodylus acutus from Turkey Point 

Power Plant (TP), Homestead, Miami-Dade County, 

grew 40.15 cm/y, which is greater than growth in 

juvenile C. acutus from other areas in Florida (Mazzotti 

et al. 2007) and comparable to UF-Herpetology 173082 

that did not benefit from the highly productive TP 

ecosystem.  This was comparable to subadult Alligator 

mississippiensis growth rates from Shark Slough in ENP 

(Table 3) and was greater than growth rates found for 

subadult native A. mississippiensis from the Shark 

Valley region of Florida (Jacobsen and Kushlan 1989), 

northern Florida (Deitz 1979), South Carolina (Bara 

1977), eastern Texas (Saalfeld et al. 2008), and 

Louisiana (Chabreck and Joanen 1979).  The subadult 

ENP C. niloticus grew at a faster rate than some native 

Florida crocodilians and other crocodilians reported in 

the literature, with the exception of C. acutus from TP.  

Growth is closely related to temperature, salinity, 

population density, food quality, and food quantity 

(Hutton 1987; Mazzotti 1999), indicating the southern 

Florida environment and Everglades habitat provided 

sufficient prey and thermoregulatory opportunities for 

favorable growth for at least one of the introduced 

crocodiles in our study (UF-Herpetology 173082). 

Putative, unverified Crocodylus niloticus have been 

introduced (stage 2) to Mississippi (Anonymous 1998) 

and Florida (Quinn 1994) but were recaptured quickly.  

While there is no current evidence of an established 

population of C. niloticus in Florida or Mississippi, 

much of the Atlantic and Gulf coasts could provide 

similar climatic conditions.  In its native range, C. 

niloticus reaches latitudes of approximately 32 degrees, 

north and south of the equator, incorporating both 
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TABLE 3.  Comparison of growth rates of Alligator mississippiensis and Crocodylus acutus in the USA and Crocodylus niloticus (UF-

Herpetology 73082) in Zimbabwe and the USA. 
 

 

Species 

 

Location 

Growth 

Rate (cm/y) 

 

Source 

Crocodilus niloticus Miami-Dade County, Florida, USA 40.5 This paper 

C. acutus Turkey Point Power Plant, Miami-Dade County, Florida, USA 40.2 Mazzotti et al. 2007 

Alligator mississippiensis Eastern Texas, USA 35.0 Saalfeld et al. 2008 
C. niloticus Ngeze, Zimbabwe 31.7 Hutton 1987 

A. mississippiensis North of Shark Slough, Florida, USA 31.0 Hines et al. 1968 

C. niloticus Hwange National Park, Zimbabwe 28.6 Hutton 1987 
A. mississippiensis North Florida, USA 24.0 Deitz 1979 

A. mississippiensis South Carolina, USA 23.5 Bara 1977 

A. mississippiensis Louisiana, USA 22.0 Chabreck and Joanen 1979 
A. mississippiensis Shark Valley, Florida, USA 13.6 Jacobsen and Kushlan 1989 

 

 

 

tropical and temperate zones.  As a comparison, this 

latitude in the southeastern USA incorporates both of 

these climate zones and falls just south of Savannah, 

Georgia, USA.  Thus, the Atlantic coast of Florida and 

the entire coastline of the Gulf of Mexico are within the 

natural climate zones and latitudinal boundaries of C. 

niloticus.  Crocodiles at Lake Ngezi (Zimbabwe) were 

subjected to minimum air temperatures of 2° C and the 

nearby area of Kadoma has a mean minimum temp of 

8.1° C in July, which is the coolest month in that area 

(Hutton 1987).  Record low air temperature in Miami, 

Miami-Dade County, Florida, is ˗2.8° C (National 

Oceanic and Atmospheric Administration, 

Climatological Records for Miami, FL. Available from 

www.srh.noaa.gov/images/mfl/climate/ 

Daily%20Records%20-%20Miami.pdf [Accessed 3 

February 2016]), which is similar to what C. niloticus 

experiences in its native range where temperatures have 

reached ˗1.0° C in Haifa, Israel (Wikipedia, Haifa. 

Available from https://en.wikipedia.org/wiki/Haifa 

[Accessed 03 February 2016]).  Temperatures in coastal 

Georgia have dropped as low as ˗10° C (Dahlberg and 

Smith 1970), which may be intolerable and indicates C. 

niloticus would probably be unsuccessful colonizing this 

latitude in the western hemisphere. 

If C. niloticus became established, it may threaten the 

native species of Florida through predation (documented 

herein) and competition, compounding the existing 

threat to native wildlife already impacted by human-

induced habitat modification and introduced invasive 

species such as the Burmese Python (Python bivittatus), 

and Argentine Black and White Tegu (Salvator 

merianae; Dorcas et al. 2012; Mazzotti et al. 2014).  

Additionally, many crocodilian species are already 

known to hybridize in captivity and where their native 

ranges overlap in the wild (Weaver et al. 2008; 

Machkour-M’Rabet et al. 2009; Rodriguez et al. 2011; 

Srikulnath et al. 2012).  Introducing C. niloticus to the 

native range of C. acutus may result in hybrids 

degrading the genetic integrity of C. acutus, a state and 

federally listed species.  

There are both economic risks and risks to human 

health and safety presented by establishment of Nile 

Crocodiles in Florida.  Throughout its native range, 

Crocodylus niloticus is responsible for significant loss of 

cattle (Aust 2009; Aust et al. 2009), and other 

domestic/farm animals, annually, which is a potential 

issue for the agricultural industry of Florida (Shrestha 

and Alavalapati 2004).  Crocodylus niloticus was 

responsible for at least 493 attacks on people 2010–

2014, 354 (71.8%), of which were fatal (CrocBITE. 

2015. The Worldwide Attack Database. Available from 

http://www.crocodile-attack.info [Accessed 6 February 

2015]).  We recommend a scientific risk assessment to 

evaluate the potential for C. niloticus establishment, 

spread, and impact in Florida.   

Native crocodilians play a vital role in our ecosystems, 

and concern over introduced Crocodylus niloticus should 

not lead to unwarranted fear or persecution of native 

species, which are protected by both state and federal 

laws.  Removing introduced wildlife quickly is the 

recommended course of action to avoid ecological 

impacts (Kraus 2009).  However, one of the captured C. 

niloticus had to be legally released shortly after its first 

capture due to legal considerations.  The Florida Fish 

and Wildlife Conservation Commission considers C. 

niloticus Class 1 wildlife and requires extensive 

experience, a captive facility inspection, and lengthy 

application process before licensing an individual to 

possess such animals.  The U.S. Fish and Wildlife 

Service (USFWS), through the Endangered Species Act, 

protects C. niloticus wherever it occurs, including 

outside its native range, and we had to obtain permission 

to capture or euthanize this species in Florida.  

Distinguishing exotic crocodilian species from native 

species is difficult and we recommend the USFWS 

require a clearly identifiable photograph of a nonnative 

crocodilian before authorization for lethal take is 

granted.  We suggest that state and federal wildlife 

agencies coordinate policies regarding capture and 

transport of protected species outside their native range 

to facilitate rapid response efforts to remove introduced 

species.   
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