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Abstract.—Understanding the distribution and habitat preferences of amphibians is crucial to protecting their 
declining populations.  It remains a challenge because most species are difficult to detect, enough data on their 
occurrence are needed, and the contribution of climatic and habitat factors is not well known.  Various modeling 
approaches exist both to infer habitat preferences based on known locations, and to extrapolate species geographic 
distributions.  We used presence-only data of three anuran species from original naturalist databases covering 
34,750 km² in the western part of France, including 660 occurrences for the Common Midwife Toad (Alytes 
obstetricans), 1,910 for the Spined Toad (Bufo spinosus), and 975 for the Common Brown Frog (Rana temporaria).  
We compared two current modeling approaches, the Ecological Niche Factor Analysis (ENFA) and Maximum 
Entropy (MaxEnt) to model their potential distributions by including high resolution climate variables, and habitat 
and landscape variables.  For each species, both analyses allowed a refined understanding of the relationships 
between habitat factors and the species distribution.  We showed that climate and natural grasslands are key 
factors in explaining the species distributions and that the surrounding environment of aquatic habitats is an 
important driver of amphibian presence.  The two models gave different predictions of distributions, which may 
lead to different planning of conservation areas.  Our study confirms the importance of using and comparing 
several models, and evidenced the importance of collecting field data at a regional scale.

Key Words.—anurans; climate; ecological niche models; land-use

Résumé.—Comprendre la répartition et les préférences d'habitat des amphibiens est crucial pour protéger leurs 
populations en déclin. Cela reste un défi car la plupart des espèces sont difficiles à détecter, les données d’occurrence 
doivent être suffisantes et l’importance des facteurs climatiques et de l'habitat n'est pas bien connue. Différentes 
approches de modélisation existent à la fois pour inférer les préférences de l'habitat en fonction des emplacements 
connus et pour extrapoler les distributions géographiques des espèces. Nous avons utilisé des données de présence 
pour trois anoures, provenant de bases naturalistes couvrant 34,750 km² dans la partie ouest de la France. Nous 
avons utilisé 660 points géoréférencés pour l’alyte accoucheur (Alytes obstetricans), 1910 pour le crapaud épineux 
(Bufo spinosus) et 975 pour la grenouille rousse (Rana temporaria). Nous avons comparé deux approches de 
modélisation actuelles, l'analyse des facteurs de niche écologique (ENFA) et l'entropie maximale (MaxEnt) pour 
modéliser leurs distributions potentielles en incluant des variables climatiques à haute résolution spatiale, des 
variables de l'habitat et du paysage. Pour chaque espèce, les deux analyses ont permis une compréhension affinée 
des relations entre les facteurs de l'habitat et leur répartition. Nous avons montré que le climat et la proximité aux 
prairies naturelles sont des facteurs clés pour expliquer les répartitions des espèces et que les milieux environnant 
les habitats aquatiques sont une variable importante de la présence d'amphibiens. Les deux modèles ont donné 
des prédictions différentes des distributions qui peuvent conduire à une planification très différente des zones de 
conservation. Notre étude confirme l'importance d'utiliser et de comparer plusieurs modèles et a mis en évidence 
l'importance de collecter des données de terrain à l'échelle régionale.
Mots-clés.—anoures; climat; modèles de niche écologiques; occupation du sol
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Introduction

Several modeling approaches and tools mainly known 
as species distribution models (SDMs), ecological niche 
models (ENMs), and species niche models have been 
developed to estimate the actual and potential distribution 
of a species.  All these approaches are used to investigate 
issues in biogeography, to analyze biodiversity patterns 
over space and time, and to understand relationships 
between species and abiotic and biotic environment 
factors.  Moreover, all have applications in conservation 
biology (Thorn et al. 2009; Syfert et al. 2014), such as 
in predicting impacts associated with invasive species 
(Lobos et al. 2013; Fernández and Hamilton 2015).  The 
term ENM refers to mechanistic and correlative models. 
Correlative models are presence/absence approaches, 
as well as presence/pseudo-absence and presence-only 
approaches, that result in different representations of 
realized niches of the species (Sillero 2011).  An ENM 
relies on the species niche concept in environmental 
and geographical space (Hirzel and Le Lay 2008).  
Hutchinson (1957) defined the concept of fundamental 
niche as a multidimensional hypervolume determined 
by the set of environmental factors that allows a species 
to live and persist and the realized niche as the occupied 
part of the fundamental niche when niche exclusion by 
competition occurs.

Presence/absence correlative models forecast the 
probability of finding the species in a particular place.  A 
presence-only correlative model predicts the suitability 
of habitats across the landscape.  Many ENM methods 
exist and it is beyond the scope of this article to cite 
all the modeling methods that have been developed or 
applied to amphibian and reptile studies.  Nevertheless, 
one can refer to the synthesis by Guisan and Thuiller 
(2005) who cited the most currently used software and 
related algorithms, including generalized linear models 
(GLM), generalized additive models (GAM), genetic 
algorithms (GARP), artificial neural networks (ANN), 
ecological niche factor analysis (ENFA), and maximum 
entropy (MaxEnt).  Among these, ENFA (Hirzel et al. 
2002) and MaxEnt (Phillips et al. 2006) have been 
successfully applied in situations where absence data 
were not available (Elith et al. 2006).

Due to the continuing worldwide amphibian decline 
(Beebee and Griffiths 2005; Hof et al. 2011), there is an 
urgent need to better understand the habitat relationships 
of amphibians and to develop methods to predict habitat 
suitability for amphibians in the landscape (Torres et al. 
2016).  European amphibians are a challenging group for 
ENM because of the bi-phasic life cycle of most species.  
To understand their distributions we must take into 
account environmental and climate variables that are 
linked both to aquatic and terrestrial habitats (Blaustein 
and Kiesecker 2002).  Among climate variables, 

temperature and precipitation are two fundamental 
drivers of amphibian distribution (Otto et al. 2007).  
The type of habitat plays an important role by acting 
on the microclimate; for instance, dense vegetation and 
forests provide enough air moisture for many species 
(Nöllert and Nöllert 2003).  Precipitation has also great 
importance because it regulates the availability of water 
bodies within the landscape, therefore contributing 
to breeding success and to the development of larvae.  
Patterns of species diversity and distribution are linked 
to the number and spatial distribution of permanent 
and temporary ponds and streams (Barnaud et al. 
1996; Wood et al. 2003) but also to the availability 
and suitability of terrestrial habitats in past and present 
climates (Araújo et al. 2006).  However, besides these 
general relationships with environmental variables, 
habitat preferences are species-specific and need further 
understanding.  

In this study, we aimed to model the potential 
distributions of three species by comparing ENFA and 
MaxEnt, and to identify the environmental factors 
related to their occurrence.  We used georeferenced 
field observations of the Common Midwife Toad 
(Alytes obstetricians), the Spined Toad (Bufo spinosus), 
and the Common Brown Frog (Rana temporaria) in 
six administrative departments of the western part of 
France and analyzed several ecological, landscape, and 
topographical variables.  These species are protected 
by law in France (Bern convention, European habitat 
directives, regional protections).

Materials and Methods

Study site.—We worked with a set of presence-only 
data covering six administrative departments in western 
and central western France for a total area of 34,989 km².  
From north to south the departments were: Indre-et-
Loire (I&L), Indre (I), Creuse (Cr), Haute-Vienne (HV), 
Corrèze (Co), and Ariège (A).  The distance between the 
northern part of Indre-et-Loire and the southern part of 
Ariège is about 650 km, with an altitude ranging from 
80 m to 3,147 m (above sea level).  This area combines 
different landscapes of hills, mountains, agricultural 
lands, valleys, plains, and urban and semi-urban zones.  
There is a main climatic north-south gradient and west-
east gradient due to the influence of the Atlantic Ocean.  
The mean annual temperature and precipitation for each 
department is 11.8° C/696 mm (I&L), 11° C/728 mm 
(I), 10.7° C/1,050 mm (Cr), 11.4° C/1,023 mm (HV), 
10.5° C/901 mm (Co), 12° C/992 mm (A; data from the 
National Center of Meteorology, MeteoFrance).

  
Species data.—We used occurrence data for three 

anuran species: Alytes obstetricans, Bufo spinosus, 
and Rana temporaria.  We collaborated with five 
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naturalist associations that gathered data from over 15 
y of field investigations conducted by trained people: 
The Naturalist Association of Study and Protection of 
Ecosystems CAUDALIS (9, rue du Nouveau Calvaire, 
37100 Tours, France), the Society of Study, Protection 
and Planning of Nature in Touraine (7, rue Charles 
Garnier, 37200 Tours, France), Indre-Nature (44, avenue 
François Mitterrand, Parc Balsan, 36000 Châteauroux, 
France), the Mammalogical and Herpetological Group 
of the Limousin (Pôle Nature Limousin, ZA du Moulin 
Cheyroux, 87700 Aixe-sur-Vienne, France), and the 
Association of Naturalists of Ariège (Vidalac, 09240 
Alzen, France).  We also participated to the inventory 
for Indre-et-Loire and Ariège beginning in 2013.  To 
minimize sampling bias, which is known to influence 
model accuracy, we only used data from 2000 to 2015 
because the majority of the data acquired before 2000 
came from opportunistic observations.  Observers 
investigated systematically subdivisions (grid cells) of 
the departments.  As a result of this first down-sampling, 
we used 660, 1,910, and 975 verified georeferenced 
occurrence points for A. obstetricans, B. spinosus and R. 
temporaria, respectively (1, subsampled dataset).  There 
were many points represented in all the provinces for all 
species, except there were relatively few points for R. 
temporaria in the northern two provinces.  We used two 
approaches to reduce spatial autocorrelation between 
occurrence points.  First, we performed spatial filtering: 
the process of removing spatially autocorrelated points 
to improve calibration and evaluation of the model 
(Boria et al. 2014).  We used the SDMtoolbox (Brown 
2014) with multiple rarefying distance (from 1 to 10 km) 
and a heterogeneity raster for topography (10 km being 
the default value) based on high spatial heterogeneity 
measured for moderately mountainous to mountainous 
regions (see Boria et al. 2014 and references therein; our 
study region includes high mountains in the south, and 
low mountains, hills, and valleys in the center).  This 
resulted in 329, 444, and 490 filtered occurrence points 
for A. obstetricans, B. spinosus, and R. temporaria, 
respectively (2, spatially filtered dataset).  Second, we 
constructed bias grid files for each species to reduce 
potential locally dense sampling (3, bias file).  The bias 
grid consisted of Gaussian kernel density maps of the 
species occurrences (Elith et al. 2010).  

Ecological and landscape variables.—We initially 
selected 23 ecological and landscape variables, all 
being potentially related to species preferences and 
requirements within the study area.  We applied 
pairwise Pearson’s correlation test on these variables 
using ENMtools (Warren et al. 2010) to avoid high 
collinearity between the variables (Elith et al. 2011).  
When |r| ≥ 0.7, the variable within the pair having less 
relevance to the ecology of the focal species (based on 

expert knowledge) was removed.  We kept 20 variables 
of the 23 for modeling (Appendix 1).  We divided the 
study area into cells of 500 × 500 m, each representing a 
resource unit (RU) potentially exploitable by the studied 
species.  We calculated the distance between the centroid 
of each RU and the nearest environmental variable using 
GIS tools in ArcGIS 10.3 (Esri, Redlands, California, 
USA).  Consequently, each RU was defined by a value 
of distance to each habitat and habitat fragmentation 
variable.  

Concerning climate variables, we used a set of 
raw climatic data provided by the national agency 
for meteorology and climate (MeteoFrance, Paris, 
France) and the European Climate Assessment & 
Dataset (ECA&D; Available from http://www.ecad.eu/ 
[Accessed 2 February 2009).  We did not use Bioclim 
datasets (WorldClim) in this study mainly because the 
time period (1960–1990) for which the bioclimatic 
variables were calculated did not fit our field observations, 
multicollinearity exist between the derived bioclimatic 
variables, and we worked with a better spatial resolution 
dataset.  We used annual means of monthly maximum 
and minimum temperatures, mean annual temperatures, 
and mean precipitation over the 2002–2014 period.  We 
inferred such climate variables at a spatial resolution 
of 1 km² by downscaling two climate data sets having 
complementary spatio-temporal characteristics (Tabor 
and Williams 2010).  First, we computed the climate 
anomalies between coarse European climate grids 
(Haylock et al. 2008) for 2002–2014 and 1961–1990 
as absolute and relative differences for temperature and 
precipitation, respectively.  Second, we re-sampled the 
anomaly grids through bilinear interpolation to achieve 
1 km² grids covering the French territory.  Third, we 
added these 1 km² climate anomaly grids to a second 
set of 1 km² French climate grids of temperature and 
precipitation averaged over 1961–1990 to achieve an 
accurate estimation of the climate conditions for 2002–
2014 (i.e., the time period corresponding to the years for 
which amphibian occurrence records were available).  
The second set of 1 km² French climate grids used 
for this step is part of a spatio-temporal climate data 
set computed through a modeling approach predicting 
temperatures (r² = 0.93 and Root-Mean-Square Deviation 
[RMSD] = 0.56 for 13,620 independent temperature 
observations) and precipitation (r² = 0.83 and RMSD = 
132 for 17,865 independent precipitation observations) 
from solar radiation, geographical, physiographical, and 
habitat variables (Bertrand et al. 2011; Bertrand 2012). 

Species distribution modeling with ENFA and 
MaxEnt.—We performed ENFA using R 3.3.2 software 
(R Core Team 2015) through the adehabitatHS 0.3.12 
package (https://cran.r-project.org/web/packages/
adehabitatHS/index.html).  This modeling approach 
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evaluates the species ecological niche based on the 
magnitude of the difference between the unbounded 
distance from the average environmental conditions 
where the species is found and the entire range of 
environmental conditions observed in the study area.  
The ENFA summarizes all environmental variables 
related to the species occurrence into independent 
factors called marginality and specialization (see 
Hirzel et al. 2002 for details).  We can identify the 
contribution of each environmental variable to the axis 
of marginality by calculating the correlation coefficient 
for each variable on it.  A positive correlation indicates 
preference for the environmental variable whereas a 
negative correlation means the contrary.  A high absolute 
value of this coefficient indicates that environmental 
conditions used by the species differ strongly from those 
encountered in the study area.  We used an absolute 
value of 0.25 to determine if the species is considered 
as marginal for each variable.  Specialization measures 
the narrowness of the niche.  It is the difference in 
the magnitude of the standard deviation of a variable 
within the available ecological space to the standard 
deviation of the same variable within the realized 
ecological niche of the species.  A species is specialist 
if it occupies strict environmental conditions compared 
to the extent of a variable in the study area.  We used 
an absolute value of 0.25 to determine if the species 
is considered as specialist for each variable.  For each 
species, we performed the ENFA first on the subsampled 
dataset of occurrence points and second on the spatially 
filtered dataset of occurrence point.  We used Monte-
Carlo test to assess the significance of the difference 
between the values obtained for the marginality and 
specialization axes using a Monte-Carlo procedure of 
999 permutations.  This test compares the distribution 
of simulated RU with actual scores of RU used (from 
the 999 random draws) on the axes of marginality and 
specialization (Fonderflick et al. 2015).  

The MaxEnt software (Phillips et al. 2004) uses the 
method of maximum entropy and is extensively used 
for analyzing presence-only data.  MaxEnt estimates the 
potential distribution of a species in a geographical area 
which is closest to uniform but concurrently constrained 
by some environmental conditions (Phillips et al. 2006).  
This permits identification of species requirements and 
environmental preferences.  The software allows us to 
study the importance of each variable in predicting the 
distribution of the species using two coefficients: the 
percentage contribution assigned to each variable in 
the model and the importance of permutation based on 
the random permutation of the values of each variable 
among the training points, which may be more relevant 
if the variables are correlated.  For each species, we 
ran 10 replicates with 30% of test data (subsample, 
random seed), and we set the other parameters by 

default (Phillips et al. 2006).  We used an average of 
the 10 replicates to have a single prediction of presence 
probabilities for each the species.  We ran the models 
with only (1) subsampled dataset, or (2) spatially filtered 
dataset, with subsampled dataset and bias file (1)(3), and 
with spatially filtered dataset and bias file (2)(3).  

Graphical outputs of the models.—We used the 
Mahalanobis distance (Package adehabitatHS. https://
cran.r-project.org/web/packages/adehabitatHS/
adehabitatHS.pdf) for ENFA to predict habitat 
suitability across the six departments.  This produced a 
spatial representation of the relative habitat suitability 
values from 0 to 1 calculated for every cell. MaxEnt also 
produces suitability maps based on the prediction of the 
probability distribution of the species.

  
Model evaluation and comparisons.—For both 

ENFA and MaxEnt, we assessed model performance 
with Receiver Operating Characteristic (ROC) curves, 
calculated for each model (Hanley and McNeil 1982;  
Lobo et al. 2010;  Robin et al. 2011).  We used the 
area under the ROC curve (Area Under the Curve, 
AUC), calculated from 30% of the occurrence points, 
as an estimate of the performance of each model.  We 
calculated AUC with the pROC-package in R for the 
ENFA model and in MaxEnt for the MaxEnt model 
(Phillips et al. 2004; Robin et al. 2011).  A random 
prediction gets an AUC value of 0.5 whereas an AUC 
value close to 1 indicates higher performance of the 
model (Dolgener et al. 2013).  The predictions are 
described as excellent for AUC between 0.9 and 1, good 
between 0.8 and 0.9, fair between 0.7 and 0.8, and poor 
below 0.7.  For better evaluation of model accuracy and 
precision (Lobo et al. 2008) we also used the maximum 
True Skill Statistics (TSS = sensitivity + specificity – 1; 
Allouche et al. 2006).  The TSS ranges from ˗1 to 1, 
where ˗1 to 0.4 = poor, 0.4 to 0.5 = fair, 0.5 to 0.7 = 
good, 0.7 to 0.85 = very good, 0.85 to 0.9 = excellent, 
0.9 to 1 = almost perfect to perfect.

Results

Model evaluation and comparisons.—We used test 
AUC and maximum TSS to evaluate the performance of 
the models run either with subsampled dataset (1), after 
the spatial filtering (2), or with the bias file (3; Appendix 
2).  The best model according to AUC and TSS were: 
for A. obstetricans, ENFA (2) and MaxEnt (1); for 
B. spinosus, ENFA (2) and MaxEnt (2; best TSS and 
second best AUC); and for R. temporaria, ENFA (1) and 
MaxEnt (2).  AUC showed fair predictive performance 
for A. obstetricans and R. temporaria for MaxEnt 
models, fair predictive performance for A. obstetricans 
ENFA model, and good for R. temporaria ENFA model.  
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AUC also showed poor predictive performance for B. 
spinosus MaxEnt and ENFA models.  TSS showed poor 
performances of prediction for all ENFA models and 
MaxEnt models for A. obstetricans and B. spinosus.  
TSS evaluated R. temporaria MaxEnt model as fair.

 
ENFA and MaxEnt analysis.—Monte-Carlo tests 

showed significant differences (P < 0.001) for both 
marginality and specialization, which indicates that 
the three species are not randomly distributed across 
the study area.  According to the results of the best 
selected ENFA models of each species (Appendix 3), 
A. obstetricans and B. spinosus showed preferences for 
short distance to natural grasslands and long distance to 
wetlands.  Rana temporaria showed preferences for short 
distance to natural grasslands as well, but also appeared 
to avoid orchards.  For each best selected MaxEnt 
model, we ranked predictor variables according to their 
percent contribution to model gain.  Starting with the 
variable that contributed the most, we proceeded down 
this ranked list, and identified the subset of variables 
required to achieve a summed contribution of at least 
50%.  For A. obstetricans, distance to urban areas, 
minimum temperature, and distance to secondary roads 
contributed the most to the distribution model (Appendix 
3).  For B. spinosus, the most contributive variables 

were distance to water bodies, minimum temperature, 
and distances to natural grasslands and secondary roads.  
For R. temporaria, the most contributive variables 
were precipitation, minimum temperature, distance to 
natural grasslands, and the maximum temperature.  The 
response curves showed that A. obstetricans (Fig. 1) 
seemed to be favored by short distances to urban areas 
and secondary roads.  The probability of presence for 
the species was higher between 9.5° C and 10.5° C for 
minimum temperature.  The probability of presence of B. 
spinosus (Fig. 2) was higher at short distances to natural 
grasslands.  For water bodies and secondary roads, the 
probability of presence was higher at short distances to 
those elements, but increased again at greater distances.  
The probability of presence dropped between 4° C and 
10° C for minimum temperatures.  The probability of 
presence of R. temporaria (Fig. 3) was also higher at 
short distances to natural grasslands.  The probability of 
presence was the highest with high precipitation, around 
3° C for minimum temperature, and around 6° C for 
maximum temperature.  

Patterns of habitat suitability.—Comparing the 
ENFA and MaxEnt methods, all maps show dissimilar 
distribution patterns of habitat suitability.  With the 
ENFA (Fig. 4), moderate to high values of suitability 

Figure 1. MaxEnt response curves of the most contributive variables for the Common Midwife Toad (Alytes obstetricians).
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Figure 2. MaxEnt response curves of the most contributive variables for the Spined Toad (Bufo spinosus).

Figure 3. MaxEnt response curves of the most contributive variables for the Common Brown Frog (Rana temporaria).
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(yellow to red) occupy very large areas whereas maps 
with MaxEnt (Fig. 5) are dominated by areas with low 
values of habitat suitability (yellow to green).

Discussion

Model performance and comparison.—Common 
problems to produce accurate ENMs are (1) the limited 
number of occurrence data, (2) the sampling bias 
related to field observations, and (3) the model-based 
uncertainty in predictions.  In this study, we were able 
to use a large database of 3,545 amphibian presence 
points over a large area (34,989 km²) with various 
types of habitats and differences in climate.  The spatial 
rarefying process improved the performance of four of 

six of our models, whereas the use of the bias file did not 
improve the models.  For more discrimination between 
models it has been recommended to use complementary 
statistics for evaluation of model performance (Allouche 
et al. 2006;  Lobo et al. 2008); therefore, we used both 
the AUC and TSS.  However, we obtained different 
predictive performances depending both on the model, 
the evaluation method, and the species, but overall 
the differences were small.  Other studies on different 
taxa found better performance of MaxEnt over ENFA 
(Fonderflick et al. 2015; González-Irusta et al. 2015), 
which was not obvious in our results.  

Our AUC scores were not very high: AUC scores > 
0.8 are common in many ENM studies.  However, it was 
demonstrated that running ENM without correcting or 

Herpetological Conservation and Biology

Figure 4. Maps of relative habitat suitability predicted by the ENFA for the Common Midwife Toad (Alytes obstetricans), the Spined 
Toad (Bufo spinosus), and the Common Brown Frog (Rana temporaria) across the six French administrative departments.  The relative 
habitat suitability is represented by a gradient, from very low suitability (0, in green) to very high suitability (1, in red).  
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checking for sampling bias and/or spatial autocorrelation 
leads to inflated measures of performance statistics (see 
for instance Boria et al. 2014).  The downsampling and 
spatial filtering contributed to limit this kind of inflation.  
The AUC scores should be interpreted with caution and 
should not be directly compared between the species.  
In our results, the models for B. spinosus had the lowest 
AUC, but in fact, in the situation where background data 
are used instead of true absence (in case of presence-
only data), AUC values indicate whether a species is 
widespread or restricted in range within the study area.  
Species with a low number of occurrence data are more 
specialist species, which leads to a better adjustment of 
the fit and as a consequence to a better disentanglement 
of presence/absence (Lobo et al. 2008).  Thus, the low 

AUC value for the B. spinosus model is consistent with 
the ecology of this species, which tends to be a generalist 
species.  Bufo spinosus is more of a generalist than 
the other two species in the study, it is able to exploit 
various environments, it is distributed widely, and it 
occurs commonly in our study area (Brotons et al. 2004; 
Hernandez et al. 2006).  For each model, TSS values 
were lower than AUC, which is often the case because 
this statistic is more rigorous and is supposed to be a 
less biased evaluation statistic than the AUC (Allouche 
et al. 2006).  TSS is more sensitive and will decrease as 
sensitivity and specificity of the model decreases, along 
with the increase of omission errors and commission 
errors.  The differences between the AUC values for each 
model were less than the differences between the TSS, 

Préau et al.—MaxEnt and ENFA modeling on three amphibian species.

Figure 5. Maps of relative habitat suitability predicted by MaxEnt for the Common Midwife Toad (Alytes obstetricans), the Spined Toad 
(Bufo spinosus), and the Common Brown Frog (Rana temporaria) across the six French administrative departments.  The relative habitat 
suitability is represented by a gradient, from very low suitability (0, in green) to very high suitability (1, in red).  
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which makes this statistic more discriminant.  Although 
the use of AUC has been criticized (see Allouche et al. 
2006 and Lobo et al. 2008), it is still extensively used for 
ENM evaluation.  Besides statistical considerations, we 
must take into account coherence with the biology and 
ecology of the species.  

Habitat and species distribution.—The use of ENM 
often helps to better understand the biology and ecology 
of the species.  Such tools may be particularly useful 
for amphibians such as our studied species because they 
live in both aquatic and terrestrial habitats and may 
respond to landscape changes at several scales.  We also 
found contradictory results compared to what is usually 
known about the ecology of our species.  ENFA results 
showed a negative relationship between presence of A. 
obstetricans and B. spinosus and wetlands (this variable 
included inland marshes and peatlands larger than 25 
ha), whereas MaxEnt results showed that water bodies 
contributed to the presence of B. spinosus.  These results 
seem to contradict the biology of these two species 
(Lescure and De Massary 2012), especially because the 
species require water bodies for breeding.  However, A. 
obstetricans is known to shelter near urban areas, far 
from wetlands and natural water bodies (Nöllert and 
Nöllert 2003).  During migration B. spinosus can travel 
several kilometers around its reproduction site (Nöllert 
and Nöllert 2003) and can be observed in habitats near 
or far away from the aquatic site.  Very often these three 
species breed in small water bodies, like permanent and 
temporary ponds in forests, quarries, or grasslands, but 
these wetland types were not included in the categories 
water bodies and wetland in the present study.  In many 
regions, small wetland features play a crucial role in 
amphibian conservation, but they are rarely included in 
geographic databases because expensive technologies 
(e.g., Light Detection and Ranging [LiDAR]) are 
required to remotely detect this habitat (Tiner et al. 
2015).  We expect that adding geographic information 
about small wetland features in our models would have 
changed the contribution between the variables and 
would also have changed some distribution patterns.  
Otherwise, our results argue that the environment near 
aquatic habitats could be an important driver determining 
the ability of individuals to reach aquatic sites.  

We also expected the presence of the species to 
be correlated with short distances to forests because 
forests can provide shelter during winter (Le Garff 
1991; Lescure and De Massary 2012).  A species like 
R. temporaria may be difficult to model accurately over 
large areas because of its varyiable ecology.  In France, 
the species is ubiquitous in the north; whereas in the 
rest of the country, it prefers either forests or grasslands 
on plains, or grasslands, and meadows above treeline 
(Duguet and Melki 2003).  At the scale of our study 

area, the two models for R. temporaria stressed the 
importance of natural grasslands variable.  

Based on the negative effects of intense agriculture 
on amphibian populations, including related habitat 
fragmentation and intensive use of pesticides (Beja 
and Alcazar 2003; Beebee and Griffiths 2005; Duguet 
and Melki 2003; Smalling et al. 2015), we expected 
negative relationships between agricultural features and 
the presence of most of the species.  For A. obstetricans 
and B. spinosus, the results of the models showed very 
poor contributions and absence of relationships with 
orchards, crops, and pastures variables, but showed 
a negative association with orchards variable for R. 
temporaria.  Many of the variables included here as 
habitat fragmentation variables have negative impacts on 
the survival and persistence of amphibian populations.

Despite numerous studies showing the impact of 
roads on amphibian mortality (Fahrig et al. 1995; Hels 
and Buchwald 2001; Kobylarz 2001) and urbanization 
on population persistence (Hamer and McDonnell 
2008), the presence of A. obstetricans seemed to be 
favored near areas with non-natural elements.  This 
agrees with the ecology of species as a pioneer species 
that prefers habitats that are open, disturbed, and even 
close to urban and industrial areas, and can breed in 
ponds found in quarries (Brown and Crespo 2000).  With 
MaxEnt, contribution of secondary roads variable was 
found to explain the distribution of A. obstetricans and 
B. spinosus, whereas primary roads variable had very 
low contribution.  In addition, these two species can 
use ditches, ruts, and retention ponds that are located 
close to roads for their reproduction (Scher 2005).  Bufo 
spinosus is frequently found near roads during migration 
(Nöllert and Nöllert 2003).  These results support the 
idea that large roads, such as four lane roads and related 
infrastructure, can have much more detrimental effects 
than smaller roads.  Species with greater dispersal 
abilities are expected to be more sensitive to the impact 
of roads (Carr and Fahrig 2001).  However, a study 
in northern Spain showed that A. obstetricans and the 
urodele Lissotriton helveticus are affected differently 
by secondary roads, whereas both species have low 
dispersal capacities (Garcia-Gonzalez et al. 2012).  

The ENFA analysis did not show relationships 
between climate variables and the presence of 
amphibians, whereas MaxEnt showed the importance 
of minimum temperature for all three species and the 
importance of maximum temperature and precipitation 
for R. temporaria.  Regarding minimum temperature A. 
obstetricans seemed to prefer temperatures around 10° 
C. Rana temporaria seemed to prefer low temperatures 
and high precipitation.  This is consistent with studies 
showing that the species can live in cold environments 
(Nöllert and Nöllert 2003; Grosselet et al. 2011).  The 
importance of climate variables in the distribution of the 

Herpetological Conservation and Biology



 100   

Préau et al.—MaxEnt and ENFA modeling on three amphibian species.

three species argues that the species could show limited 
tolerance to changing temperatures, especially to long-
lasting extreme events of warm and dry days, which 
are predicted to increase in frequency during winter 
with climate change (Meehl et al. 2000).  It would be 
interesting to model habitat suitability maps for these 
species under changing climatic conditions.  In fact, 
applying scenarios corresponding to global warming 
forecasts would allow us to predict the distribution shifts 
of these species in France and identify priority areas for 
future conservation.  To build more accurate predictions 
with the type of models we have used, however, will 
require more occurrence points in a larger area.

 
 Conclusions.—Our results have allowed us to map 

potential habitat suitability for three anuran species at 
fine spatial scale with high resolution climate variables 
using two different modeling methods, ENFA and 
MaxEnt.  Using the same landscape and climate variables 
with presence-only data, different estimates of habitat 
suitability and relationships with the environmental 
variables resulted from the two methods.  The results 
provided by the MaxEnt modeling were more consistent 
with the ecology of the three species than those provided 
by the ENFA, which did not highlight many habitat 
relationships that were expected.  This reinforces the 
good performance and accuracy of MaxEnt (Elith 
et al. 2006) that should be preferred over the ENFA.  
Such differences could be problematic for local scale 
conservation or management decisions because there 
is risk they could lead to arbitrary conclusions (Elith 
et al. 2006; Olivier and Wotherspoon 2006; Navarro-
Cerrillo et al. 2011; Fonderflick et al. 2015).  However, 
we recommend the use two or more modeling methods 
together.  Even if one model appears to outperform the 
other, the advantage of running two or more models 
with the same datasets represents a cautious approach.  
Because all models have flaws, and are only estimations 
of reality, management decisions should be made 
based on as much information as possible.  The issue 
of sampling bias also needs to be taken into account as 
much as possible during the field sampling and with 
statistical methods.
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Appendix 1. The ecological, landscape, and climate variables used in the models with data sources in parentheses: (1) CorineLandCover, 
www.statistiques.developpement-durable.gouv.fr; (2) Sandre database, www.sandre.eaufrance.fr; (3) IGN, www.ign.fr; (4) see Materials 
and Methods).

Variable Description

Habitat variables

Coniferous forests Distance to the closest coniferous forest (1)

Mixed forests Distance to the closest mixed forest (1)

Deciduous forests Distance to the closest deciduous forest (1)

Orchards Distance to the closest fruit trees or berry plantation (1)

Crops Distance to the closest crop (1)

Pastures Distance to the closest pasture (1)

Natural grasslands Distance to the closest natural grassland (1)

Moors and heathlands Distance to the closest moor or heathland (1)

Water bodies Distance to the closest water body (e.g., pond, lake) (2)

Water courses Distance to the closest water system (2)

Wetlands Distance to the closest wetland (1)

Habitat fragmentation variables

Extraction sites Distance to the closest extraction site (1)

Urban areas Distance to the closest urban area (1)

Primary roads Distance to the closest highway, national or departmental road (3)

Secondary roads Distance to the closest communal or unpaved road (3)

Railways Distance to the closest railway (3)

 Climate variables

Max. temperature Averages of mean maximum temperatures between 2002 and 2014 (4)

Min. temperature Averages of mean minimum temperatures between 2002 and 2014 (4)

Mean temperature Averages of mean temperatures between 2002 and 2014 (4)

Precipitation Averages of yearly precipitations between 2002 and 2014 (4)
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Appendix 2. Values of Area under the ROC curve (AUCtest) and True Skill Statistic (TSS) of the different models performed with ENFA 
and MaxEnt.  Highest values are in bold.  The combinations of data and settings used for the different models are indicated in parentheses: 
(1) the initial subsampled occurrence dataset, (2) after spatial filtering, and (3) model run with a bias file.

Alytes obstetricans Bufo spinosus Rana temporaria

 
Mean 
AUC SD

Mean 
TSS SD

Mean 
AUC SD

Mean 
TSS SD

Mean 
AUC SD

Mean 
TSS SD

MaxEnt (1) 0.731 0.010 0.364 0.031 0.684 0.008 0.202 0.026 0.785 0.008 0.333 0.019

MaxEnt (2) 0.710 0.026 0.277 0.073 0.669 0.019 0.263 0.047 0.793 0.009 0.443 0.040

MaxEnt (1)(3) 0.686 0.026 0.248 0.076 0.638 0.011 0.025 0.007 0.779 0.013 0.265 0.029

MaxEnt (2)(3) 0.710 0.022 0.288 0.049 0.659 0.021 0.069 0.029 0.790 0.012 0.425 0.012

ENFA (1) 0.682 0.026 0.183 0.066 0.607 0.032 0.035 0.058 0.804 0.049 0.384 0.175

ENFA (2) 0.790 0.024 0.374 0.108 0.679 0.037 0.210 0.056 0.709 0.020 0.234 0.135

Appendix 3. Results of percentage contribution of MaxEnt best models and marginality of ENFA best models for the 20 variables.  Bold 
values in Contribution column are variables with highest percentage contribution that contribute at least 50% of the gain of a model.  Bold 
values in Marginality column indicate significant correlations of species preferences to corresponding variables.  The data used for the 
different models are indicated in parentheses: (1) the initial subsampled occurrence dataset, (2) after spatial filtering.

Ecological, landscape, and 
climate variables

Alytes obstetricans Bufo spinosus Rana temporaria

MaxEnt (1) ENFA (2) MaxEnt (2) ENFA (2) MaxEnt (2) ENFA (1)

Contribution Marginality Contribution Marginality Contribution Marginality

Habitat 
variables

Coniferous forests 1.7 0.03 3.1 0.05 2.1 0.09

Mixed forests 2.8 0.03 1 0.05 1.2 0.05

Deciduous forests 0.9 0.01 4.5 0.02 2 -0.01

Orchards 2.4 0.05 3.7 -0.14 2.6 -0.58

Crops 2.6 0.00 1.5 -0.02 2.2 -0.05

Pastures 1.8 0.01 1.1 -0.02 2.6 -0.04

Natural grasslands 4 0.83 11.4 0.84 9.9 0.70

Moors and heathlands 6.4 -0.13 2 0.21 1 0.24

Water bodies 6.2 -0.09 21 -0.03 3.9 0.02

Water courses 2 -0.00 3.8 0.00 3.9 0.01

Wetland 2.9 -0.53 1.2 -0.46 0.6 0.23

Habitat 
fragmentation 
variables

Extraction sites 4.6 0.04 3.9 0.00 0.5 -0.16

Urban areas 25 0.01 6.1 -0.02 3.8 -0.06

Primary roads 1.7 0.01 3.2 -0.03 0.9 -0.06

Secondary roads 11.4 0.01 10.4 -0.01 7.4 -0.05

Railways 2.6 -0.03 1.8 -0.08 1.1 -0.11

Climate 
variables

Max. temperature 0.7 -0.00 3.4 0.00 9.1 0.00

Min. temperature 15.1 -0.00 11.8 0.00 12.2 0.00

Mean temperature 0.5 -0.00 0.8 0.00 8.1 -0.00

Precipitation 4.8 -0.00 4.5 -0.00 24.8 -0.01


