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Abstract.—Although initially applied to endotherms, Bergmann’s Rule (body size correlated with latitude) has also 
been demonstrated for a number of ectothermic taxa, including turtles.   We examined body size and growth in 
the Pond Slider (Trachemys scripta) at the northern edge of its range in Indiana.  We then compiled body size data 
from across the range of the species to test for latitudinal trends.  Adult females in Indiana were larger than males, 
and their growth rates began diverging by at least their fourth year.  Mean and maximum body size were positively 
correlated with latitude in female Red-eared Sliders (T. s. elegans), but not in males or in Yellow-bellied Sliders (T. 
s. scripta), for which the available data were limited.  More data are needed to understand geographic patterns in 
growth, age and size at maturity, and adult male size in this otherwise well-studied species.
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introduction 

Bergmann’s Rule (Bergmann 1847; Meiri 2011) 
hypothesizes an adaptive negative relationship between 
environmental temperature (usually expressed as 
latitude) and body size in endotherms (Mayr 1956) as 
a mechanism for heat conservation.  Based on surface 
area to volume ratios, larger bodies, with proportionally 
less surface area than smaller bodies, result in decreased 
heat loss by conduction and convection in endotherms 
at colder, higher latitudes (Bergmann 1847).  The rule 
has also been applied to a number of ectothermic taxa.  
For example, a latitudinal increase in body size has been 
demonstrated in several North American and European 
turtles (Ashton and Feldman 2003; Greaves and Litzgus 
2009; Angielczyk et al. 2015; Werner et al. 2015; Joos 
et al. 2017). 

Several adaptive explanations for this pattern in 
turtles have been proposed (reviewed in Iverson and 
Smith 1993 and Ashton and Feldman 2003).  Similar 
to endotherms, larger turtles at high latitudes may gain 
an advantage because of their higher thermal inertia, 
even though they cannot heat or cool rapidly (Lindsey 
1966; Stevenson 1985).  Larger bodies may also confer 
an advantage to turtles in the storage of metabolites 
(catabolic and anabolic) during the longer winters at 
high latitudes (Murphy 1985).  Large bodies in turtles 
at high latitudes also might be a response to decreased 
competition from other turtle species, due to decreased 
species density at higher latitudes (Moll 1973).  In 
addition, larger body size at high latitudes permits larger 
clutch sizes, presumably offsetting the short active 

season, which in turn limits annual clutch frequency 
(Iverson and Smith 1993; Litzgus and Mousseau 2006).  
Finally, larger turtles presumably dig deeper nests that 
are more likely to reach below the frost line, which 
might result in decreased freezing-mortality of hatchings 
overwintering in the nest (Iverson and Smith 1993).

If selection does indeed drive larger body size in 
turtles at higher latitudes, the question remains whether 
this is accomplished via faster juvenile growth or longer 
time to maturity, or some combination of these.  Several 
studies have reported that maturity is delayed in turtle 
populations at higher latitudes (e.g., Tinkle 1961, 
for Common Musk Turtles, Sternotherus odoratus; 
Galbraith et al. 1989, for Snapping Turtles, Chelydra 
serpentina; St. Clair et al. 1994, for Painted Turtles, 
Chrysemys picta; and Germano and Reidle 2015 for 
Western Pond Turtles, Actinemys marmorata), but only 
one study (St. Clair et al. 1994) has attempted to compare 
juvenile growth rates for a turtle species across latitude. 
That study reported faster juvenile growth in northern 
populations of C. picta (Michigan and Canada) than in 
a southern population (Louisiana), despite the shorter 
northern growing season.  Unfortunately, that study may 
be compromised by recent molecular studies suggesting 
that the southern population is a separate species, C. 
dorsalis (review in Turtle Taxonomy Working Group 
[TTWG] 2017). Latitudinal patterns of juvenile growth 
in turtles are thus sorely in need of study.

The Pond Slider, Trachemys scripta, is one of 
the best-studied wide-ranging turtle species in North 
America (e.g., Gibbons 1990; Lovich and Ennen 
2013).  Previously, the species was described to exhibit 
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a pattern of largest body sizes at northern temperate 
and at southern tropical latitudes in Mesoamerica, with 
smaller body sizes at mid-latitudes (Tucker et al. 1999; 
Ashton and Feldman 2003).  However, the taxonomy 
of this turtle has changed radically since those earlier 
studies and the distribution of T. scripta is now restricted 
to the USA and extreme northeastern Mexico (Powell 
et al. 2016; TTWG 2017).  Hence, this reevaluation of 
geographic variation in its body size is merited. 

We conducted a mark-recapture study from 1979 to 
2016 of T. scripta at Dewart Lake in northern Indiana 
(Smith et al. 2006), near the northern limit of the range 
of T. scripta (Powell et al. 2016; TTWG 2017).  To 
clarify geographic variation in body size in this turtle, 
we undertook an analysis of growth and body size of 
Sliders at our Indiana study site and compared our data 
with previously published data from across the range of 
the species.  If larger body size confers an advantage 
at colder latitudes as asserted by Bergmann’s Rule, 
then we predicted that adult Sliders from Dewart Lake 
would be larger and, based on St. Clair et al (1994), that 
their growth rates would be faster than those of more 
southern populations.

materialS and methodS

We studied Red-eared Sliders (Trachemys scripta 
elegans) in the marsh at the southeast end of Station Bay 
(area = 4.5 ha) in the southeast corner of Dewart Lake 
(Wade and Gifford 1965) near Syracuse, Kosciosko 
County, Indiana, USA (see Iverson 1988; Smith and 
Iverson 2002, 2004; Smith et al. 2006, 2016).   We 
sampled turtles nearly annually (usually in late July 
to early August for 2–5 d) using a variety of trapping 
and capture methods.  Station Bay surveys prior to 
1992 used aquatic wire funnel traps (n = 5–15) baited 
with canned sardines or fresh fish (see Iverson 1979 
for design).  Beginning in 1992, we surveyed the site 
with three to twelve 2.5 cm mesh fyke nets deployed 
with 15 m leads between a pair of 90 cm hoop diameter 
funnel traps.  Fyke nets quickly trapped fish, which 
served as bait, so no supplementary bait was necessary.  
Traps were checked every 2–3 h from first light to 1–2 
h post-sunset.  No turtles entered the traps during the 
night (Smith and Iverson 2004).  To avoid recapture 
within each sampling period, we held all turtles in 
large tubs with water during each sampling period, and 
then released them at the conclusion of trapping.  We 
individually marked all captured sliders with notches in 
the marginal scutes (Cagle 1939). 

Although our study population lies slightly 
beyond the northern edge of the range of Trachemys 
scripta as generally reported (Ernst and Lovich 2009; 
TTWG 2017; Powell et al. 2016), this species was 
first reported there by Wade and Gifford in 1965.  In 

addition, unpublished records from the Earlham College 
Biological Station reported T. s. elegans from the lake 
in the mid-1950s.  Although never common (Smith et 
al. 2006), we believe that the population is indigenous, 
although supplementation by releases of pet-store turtles 
in the mid- to late 20th Century is possible.

We measured the maximum carapace length (CL) 
and plastron length (PL) of the turtles (± 1 mm) with 
dial calipers in a plane parallel to the plastron (following 
Cagle 1946; see also Iverson 1977) and weighed each 
turtle (± 1 g) with spring scales (PESOLA Präzisionswaagen, 
Chaltenbodenstrasse 4A, 8834 Schindellegi, Switzerland).  
When possible, we determined the sex of turtles based on 
external dimorphic characters (elongate foreclaws, 
elongate tails; Ernst and Lovich 2009).  When clearly 
visible, we counted abdominal scute growth rings to 
estimate age in juvenile turtles.  Because winters are 
severe at Dewart Lake, and because turtles there exhibit 
rapid growth (see below), resident sliders display well-
defined and distinctive growth rings as juveniles (see 
also Cagle 1946), and the validity of their use in this 
population was confirmed by counts made on recaptures 
in subsequent years.  Realizing the controversy 
concerning the use of growth rings for determining age 
of turtles (Brooks et al. 1997; Germano and Bury 1998, 
among others), we used recaptures of turtles for which 
age was originally determined using rings as juveniles 
< eight winters, insuring the accuracy of the time 
interval used over the growth measure.  For our growth 
calculations, we assumed that the growing season was 
6 mo long (Glidewell 1984), lasting from 15 April to 
15 October (see also Cagle 1946).  Hence, a turtle with 
three growth rings captured on 15 July was considered to 
be 3.5 winters old (equivalent to 2.5 seasons of growth).

Body size data from first capture to last recapture 
were used to model somatic growth in a von Bertalanffy 
growth analysis (Frazer et al. 1990; Dunham and 
Gibbons 1990; Lindeman 1997), with one modification.  
Because hatchling sliders in our population overwinter 
in their nest (Baker et al. 2010, 2013) and we captured a 
single recently emerged hatchling with a fresh umbilicus 
and no shell growth on 25 May 1985 (27.65 mm CL; 
25.6 mm PL), we assumed no post-developmental 
growth before the start of the first winter.  Therefore, we 
assumed that a turtle captured on 15 July 2002 with two 
growth rings (e.g., during the second activity season of 
that turtle) grew from 27.65 mm CL (after emergence 
in spring of 2000) to its size of capture following 1.5 
y of growth (following Jones 2017).  We augmented 
our recapture data with 30 such individuals with two 
growth rings (i.e., in their second season of growth).  
We included recapture data from juveniles for which 
we could not determine sex in both the male and female 
analyses.
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We did not record midline lengths of abdominal 
scute growth rings and use those measures to construct 
juvenile growth, even though Sergeev (1937) 
demonstrated its use (see also Cagle 1946).  This method 
requires accurate counts and measures of growth rings 
and assumes that the ratio of abdominal midline seam 
length to plastron length remains constant throughout 

life.  The latter was untested in our population, and 
hence, not used.  Because we could not determine size 
at maturity in our study population, we followed Cagle 
(1944, 1948) in considering all females > 170 mm CL 
(about 160 mm PL) and males > 100 mm CL (about 90 
mm PL) as adults.

taBle 1. Mean adult body size (carapace length, CL, or plastron length, PL, in mm) in Red-eared Sliders (Trachemys scripta elegans) 
across its range.  Data are arranged by decreasing latitude (in parenthesis below location).  Some studies only reported CL or PL data 
(not both); the missing variable was estimated (marked by an asterisk) based on the ratio of PL to CL reported in this study (male PL/CL 
= 0.916; female = 0.942).  Means are followed by sample size and appear above the range in parentheses.  Missouri populations were 
studied in warm and cold-water habitats.  Question marks indicate unreported data.

Location Male CL Female CL Male PL Female PL Source

Indiana
(41.5)

174.5; 108
(108–248)

227.6; 98
(170–277)

160.9; 108
(103–223)

214.0; 98
(161–261)

This paper

Illinois
(39.0)

––– 221.9*; 25
(199–239)

––– 209; 25
(187–225)

Tucker 1997

Illinois
(39.0)

––– 226.7*; 162
(177–255)

––– 213.5; 162
(167–240)

Tucker and Moll 
1997

Illinois
(39.0)

––– 227.1*; 789
(177–274)

––– 213.9; 789
(167–258)

Tucker et al. 1998

Illinois
(Stump Lake; 39.0)

––– 225.5*; 990
(177–267)

––– 212.4; 990
(167–251)

Tucker et al. 1999

Illinois
(Swan Lake; 39.0)

––– 227.3*; 677
(178–268)

––– 214.1; 677
(168–252)

Tucker 1999

Illinois
(39.0)

––– 218; 11
(189–240)

––– 207; 11
(178–230)

Tucker et al. 2001

Illinois
(39.0)

––– 210.7*; 392
(177–255)

––– 198.5; 392
(167–240)

Tucker 2001

Southern Illinois
(38.0)

179.3; 4
(156–196)

205.9; 9
(166–243)

170.5; 4
(151–188)

191.2; 9
(161–224)

Cahn 1937

Southwest Illinois
(38.0)

––– 224.1*; 16
(196–248)

––– 211.1; 16
(185–234)

Thornhill 1982

Southwest Illinois
(38.0)

––– 214.9*; 21
(184–254)

––– 202.4; 21
(173–239)

Thornhill 1982

Southern Illinois
(37.5)

135.4; ?
(?–186)

189.1; ?
(?–260)

124.0*; ?
(?–170)

178.1*; ?
(?–245)

Cagle 1946

Southern Illinois
(37.5)

––– 215.0*; 67
(168–234)

––– 202.5; 67
(158–220)

Cagle 1950

Missouri
(cold; 36.5)

180.9; 48*
(112–257)

224.4*; 48
(189–263)

163.2; 105
(102–225)

207.0; 48
(178–240)

Thomas 1993

Missouri
(warm; 36.5)

183.9; 99*
(113–235)

222.3*; 39
(185–261)

166.8; 99
(102–210)

204.3; 39
(174–240)

Thomas 1993

Northeast Oklahoma
(35.5)

––– 188.2; 35
–––

––– 171.5; 35
–––

Hays and McBee 
2010

Arkansas
(34.5)

––– 219.4; 18
(200–240)

––– 203.6; 18
(181–226)

Iverson, 
unpublished

Southern Oklahoma
(34.0)

––– 207*; 6
(191–216)

––– 195; 6
(180–203)

Webb 1961

Mississippi
1977 (33.5)

142.5*; 117
(98–203)

206.5*; 64
(177–239)

130.5; 117
(90–186)

194.5; 64
(167–225)

Parker 1984

Mississippi
1982 (33.5)

157.5*; 80
(102–199)

205*; 31
(170–237)

144.3; 80
(93–182)

193.2; 31
(160–223)

Parker 1984

Louisiana
(30.0)

 ––– 202.8*; 59
(159–234)

––– 191.0; 59
(150–220)

Cagle 1950
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To test the applicability of Bergmann’s Rule to 
sliders, body size data (CL and/or PL) were extracted 
from the published literature.  Trachemys scripta 
includes three subspecies (Powell et al. 2016; TTWG 
2017): the Yellow-bellied Slider, T. s. scripta, along the 
Atlantic seaboard; the Red-eared Slider, T. s. elegans, 
found primarily in the Mississippi River basin; and the 
Cumberland Slider, T. s. troosti, restricted to a small 
region in the Cumberland and Tennessee River Valleys.  
To minimize longitude and intraspecific taxonomy 
as potential confounding factors in understanding 
latitudinal body size patterns, we performed our 
analyses separately for T. s. scripta (spanning 8° latitude 
in the eastern USA) and T. s. elegans (13° in the central 
USA).  We estimated latitude of each study site to the 
nearest 0.5° north latitude based on the original paper 
or Google Earth.  We evaluated latitudinal trends in 
carapace and plastron length with least squares linear 
regression analysis and mean body size measurements 
by sex within our study population were compared with 
a Student’s t-test (α = 0.05).  Means are followed by ± 1 
SD.  We performed all analyses using Statview software.

reSultS

Over our 37-y study period, we captured 108 males 
(20 recaptured a total of 27 times), 98 females (28 
recaptured a total of 52 times), and 76 juveniles (four 
recaptured a total of six times) from Dewart Lake.  
Mean interval between first and last captures for all 
20 males was 4.0 ± 3.9 y (range, 1–14 y) and for all 
28 recaptured females it was 4.6 ± 3.4 y (range, 1–14 

y).  For the combined four recaptured juveniles and 30 
estimates from second year turtles, the mean interval 
was 1.4 ± 0.2 y (range, 1–2 y).

Adult females at our site were significantly larger 
than adult males (Table 1; for CL, 227.6 ± 31.2 vs. 
174.5 ± 38.3, t = 11.5, df = 204, P < 0.001; for PL, 
214.0 ± 28.2 vs. 160.9 ± 32.6, t = 13.3, df = 206, P < 
0.001).  Plots of body size by estimated age based on 
recaptures of juvenile turtles of known age suggested 
that female body size diverged from that of males as 
early as the fourth year of life at between 100–150 mm 
CL (Fig. 1); the same pattern of divergence between 
100–150 mm CL was evident from our growth rate 
data (Fig. 2).  Von Bertalanffy growth models based 
on recaptures of 20 males, 28 females, 4 juveniles, and 
estimated recaptures (from hatchling size) of another 30 
second-year juveniles also indicated the divergence in 
size of males and females by the fourth growing season 
(Fig. 3; Table 2).

Mean and maximum female carapace and plastron 
lengths in T. s. elegans varied positively with latitude 
(Fig. 4; for mean CL, r = 0.54, t = 2.76, df = 19, P = 
0.013; for maximum CL, r = 0.64, t = 3.52, df = 18, P 
= 0.002; for mean PL, r = 0.54, t = 2.82, df = 19, P = 
0.011; and for maximum PL, r = 0.67, t = 3.84, df = 18, 
P = 0.001).  Males exhibited no latitudinal relationships 
with body size (P > 0.29 for all regressions), but data 
were available for only eight populations.  Similar 
analyses of body size across populations of T. s. scripta 
(Table 3) revealed no significant relationship between 
body size and latitude for mean or maximum CL or PL 
or for either sex (P > 0.25 for all regressions; Table 3).

taBle 2. Plastron length (in mm) by age for populations of juvenile Red-eared Sliders (Trachemys scripta elegans) across latitude.  Age 
is corrected across studies to numbers of seasons of growth post-emergence; methods follow Sergeev (Sergeev; 1937) or von Bertalanffy 
(von Bert; Dunham and Gibbons 1990).  For sex, M = males and F = Females.

Estimated Age (years)

 Location 1 2 3 4 5 6 7 8 9

(Latitude) Sex Method Plastron Length (mm) Source

Indiana M von Bert 60.3 87.8 109.4 126.4 139.7 150.3 158.5 165.1 170.2 This paper

(41.5) F von Bert 62.1 92 116.7 137.1 154 167.9 179.5 189 196.9 This paper

Illinois-lake
(39.0)

mix Sergeev 49.1 70.4 103.4 130.2 152.1 167.8 186.4 199.5 206 Tucker 1999; Tucker 
and Moll 1997

Illinois-ditch
(37.5)

mix Sergeev 47 55.2 65.2 – – – – – – Cagle 1946

Missouri-warm
(36.5)

mix Sergeev 53.2 69 83.5 – – – – – – Cagle 1946

Missouri-cold mix Sergeev 46.8 63.9 81 98.1 – – – – – Thomas 1993

(36.5) mix Sergeev 37.6 47 56.4 63.8 – – – – – Thomas 1993

Oklahoma M Sergeev 54 71 89 – – – – – – Webb 1961

(34.0) F Sergeev 62 91 114 145 – – – – – Webb 1961

Texas M von Bert 43 56 68 78 88 98 107 115 122 Glidewell 1984

(33.0) F von Bert 62 89 112 131 147 161 172 182 190 Glidewell 1984
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diScuSSion

The available data strongly suggest a latitudinal 
increase in body size in female T. s. elegans; however, 
additional data for males are needed to determine 
whether they also follow Bergmann’s Rule (Ashton 
2004).  It should be noted that different authors frequently 
used different methods for measuring carapace and 
plastron length.  For example, some authors measure 
maximum plastron length as we did (see Methods; 
Cagle 1946), whereas others measured PL along the 
midline (Pritchard 1969; Tucker et al. 1999), which 
can be substantially shorter than maximum length (see 
Iverson and Lewis 2018).  This variation in methods 
has the potential to affect the statistical significance of 
our results; however, we believe that the large number 
of samples for T. s. elegans and the small degree of 

difference in measurements among populations did not 
affect our conclusions.

Numerous studies of juvenile growth in T. scripta 
lumped males and females in their growth analyses 
(Cagle 1946; Thomas 1993; Tucker et al. 1999).  Our 
data, however,  suggest that growth rates in male and 
female T. s. elegans in Indiana diverge by the fourth 
season of growth if not before.  Webb (1961) and 
Glidewell (1984) reported that females grew faster than 
males during their first growing season.  In contrast, 
Dunham and Gibbons (1990) claimed that, as juveniles, 
male and female T. s. scripta grow at the same rate.  
Growth data are needed from additional populations 
to determine if juvenile growth patterns differ by sex 
between the two subspecies.

The meager available data on juvenile growth rates 
in T. s. elegans suggest considerable variation among 
populations, with perhaps a weak latitudinal pattern of 
increasing growth rate.  Any pattern is obscured by the fact 
that previous authors lumped the sexes in their analyses.  
In addition, substantial variation is expected given that 

Herpetological Conservation and Biology

fiGure 1. Carapace length by age for all known age captures for 
Red-eared Sliders (Trachemys scripta elegans) at Dewart Lake, 
Indiana, USA.  Data include recaptures of turtles first captured and 
aged by growth rings as juveniles (< eight rings).  Age is plotted 
in seasons of growth after emergence from the nest (see Methods).  
Solid dots are males; open dots are females; crosses are unsexed 
turtles.  Some turtles are plotted more than once (if recaptured). 

fiGure 2. Relationships of carapacial growth rate (mm/y) to mean 
carapace length (mm) at first and last capture for Red-eared Sliders 
(Trachemys scripta elegans) in Dewart Lake, Indiana, USA.  Solid 
dots for carapace lengths < 75 mm are unsexed juveniles included 
in both regression calculations.  Some solid dots represent male 
and female turtles with identical data.

fiGure 3. Estimated growth curves for Red-eared Sliders 
(Trachemys scripta elegans) at Dewart Lake, Indiana, USA, based 
on von Bertalanffy growth model analyses.  Juvenile turtles (sex 
not determined) were included in both male and female analyses.  
Age is plotted in seasons of growth after emergence from the nest.  
The von Bertalanffy curve for males and unsexed juveniles was 
CL (in mm) = 206.4(1˗0.866e-0.240t), and for females and unsexed 
juveniles it was CL (in mm) = 249.1(1˗0.899e-0.190t).

fiGure 4. Latitudinal variation in mean carapace (filled circles; r 
= 0.54; P = 0.013) and plastron lengths (open circles; r = 0.54; P 
= 0.011) for adult females across populations of Red-eared Sliders 
(Trachemys scripta elegans; see Table 1).
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growth in turtles has been shown to be affected by aerial 
and aquatic temperatures (Cagle 1946; Parmenter 1980; 
Thornhill 1982; Avery et al. 1993; and Thomas 1993; 
among others), diet and food quality (Gibbons 1967; 
Ernst and McDonald 1989; Avery et al. 1993), food 
abundance (Cagle 1946), pond bottom type (Quinn and 
Christiansen 1972) and even changing wetland water 
levels (Webb 1961).  Although a latitudinal pattern of 
slower juvenile growth in temperate regions would be 
expected due to temperatures alone, our preliminary data 
for T. s. elegans and those of St. Clair et al. (1994) for 
C. picta suggest that growth rates may actually increase 
with latitude in at least those two species.  In addition, 
if sexual maturity is more dependent on size than on 
age, as is usually assumed (Cagle 1950; Legler 1960; 
Moll 1979; among others), any latitudinal variation in 
growth rates should be reflected in variation in age at 
maturity.  Unfortunately, no geographic pattern in age 
at maturity is evident from the available data for sliders 

(Table 4).  Hence, despite how well studied this species 
is (e.g., Gibbons 1990; Lovich and Ennen 2013), we still 
do not understand the geographic patterns of juvenile 
growth and maturity that contribute to the latitudinal 
increase in adult body size.  The collection of those 
data is important to understanding the newly emerging, 
confounding factor of global warming.  Furthermore, 
as suggested by St. Clair et al. (1994), common garden 
studies of juvenile growth among turtle populations 
across latitude would be helpful in sourcing the genetic 
versus environmental bases for the variation in growth 
and sexual maturity observed to date. 

No well-sampled, wide-ranging chelonian species 
for which data on body size across latitude have been 
analyzed has been shown to contradict Bergmann’s 
Rule.  Of the 20 North American turtle species with 
distributions exceeding 10° of latitude, six have been 
shown quantitatively to follow Bergmann’s Rule: 
Chelydra serpentina (Iverson et al. 1997), Rough-footed 

taBle 3. Adult body size (carapace length, CL, or plastron length, PL, in mm) in Yellow-Bellied Sliders (Trachemys scripta scripta) 
across its range.  Data are arranged by decreasing latitude.  Some studies only reported CL or PL data (not both); the missing variable was 
estimated (and marked by an asterisk) based on the ratio of PL to CL calculated from data in Mitchell and Pague (1991; male PL/CL = 
0.906; female = 0.936).  Mean is followed by sample size and appears above the range in parentheses.

Location
(Latitude) Male CL Female CL Male PL Female PL Source

Virginia
(36.5)

158.4; 20
(102–215)

248.2; 21
(232–272)

143.5; 20
(94–189)

232.2; 21
–––

Mitchell and Pague 1990, 1991

North Carolina
(ca. 35.5) 

––– 224.1; 12
(198–249)

––– 208.6*; 12
(185–233)

Palmer and Braswell 1995

South Carolina 
(all populations)    

––– 224.4*; 61
(160–296)

––– 210; 61
(150–277)

Congdon and Gibbons 1983

South Carolina
(Kiawah; 33.5)

220.8*; 19 273.5*; 17 200; 19 256; 17 Gibbons and Lovich 1990

South Carolina
(Capers; 33.5)

206.4*; 14 269.2*; 45 187; 14 252; 45 Gibbons and Lovich 1990

South Carolina
(Kearse; 33.5)

––– 206.2*; 15 ––– 193; 15 Congdon and Gibbons 1983

South Carolina
(Lodge; 33)

––– 223.0*; 10 ––– 208.7; 10 Congdon and Gibbons 1983

South Carolina
(Ellenton; 33)

153.4*; 570 198.7*; 353 139; 570 186; 353 Gibbons and Lovich 1990

South Carolina
(Par; 33)

174.4*; 760 250.0*; 354 158; 760 234; 354 Gibbons and Lovich 1990

South Carolina
(Risher; 33)   

156.7*; 63 203.0*; 58 142; 63 190; 58 Gibbons and Lovich 1990

South Carolina
(Lost; 33)   

161.1*; 653 208.3*; 653 146; 653 195; 328 Gibbons and Lovich 1990

South Carolina
(Pond B; 33)  

150.1*; 185 225.4*; 78 136; 185 211; 78 Gibbons and Lovich 1990

Georgia
(31)

––– 207.7*; 6 ––– 194.4; 6 Congdon and Gibbons 1983 

Northwest Florida
(30.5)

––– 217; 25
(189–237)

––– 199; 87
(171–225)

Aresco 2004

North Florida
(29.5)

 ––– 224.7*; 18
(196–246)

––– 210.3; 18
(183–230)

Jackson 1988
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Mud Turtle, Kinosternon hirtipes (Table 1 in Iverson 
1985), Sternotherus odoratus (Tinkle 1961; Edmonds 
and Brooks 1996; Iverson and Meshaka 2006), 
Chrysemys picta (Moll 1973; Iverson and Smith 1993; 
Tesche and Hodges 2015), Spotted Turtle, Clemmys 
guttata (Litzgus and Brooks 1998; Litzgus et al. 2004), 
Wood Turtle, Glyptemys insculpta (Greaves and Litzgus 
2009), and Trachemys scripta (this study).  For an 
additional five species, the available preliminary data 
suggest a positive correlation between latitude and body 
size (Ashton and Feldman 2003): Eastern Mud Turtle, 
Kinosternon subrubrum (Iverson 1979), Actinemys 
marmorata (Bury et al. 2012; Germano and Riedle 
2015), Diamond-backed Terrapin, Malaclemys terrapin 
(Seigel 1980; Lovich and Gibbons 1990; Aresco 1996), 
Western Box Turtle, Terrapene ornata (Legler 1960; 
Blair 1976), and Spiny Softshell, Apalone spinifera 
(Webb 1962; Iverson, unpubl. data).  For the remaining 
nine wide-ranging North American taxa, geographic 
variation in body size has not yet been evaluated. 

Six additional wide-ranging turtle species from other 
parts of the world that have been studied also follow 
Bergmann’s Rule: Black Spine-neck Swamp Turtle 
Acanthochelys spixii (Bager et al. 2016), European 
Pond Turtle, Emys orbicularis (females only: Joos et al. 
2017), Chaco Tortoise, Chelonoidis chilensis (Fritz et al. 
2012), Leopard Tortoise, Stigmochelys pardalis (Fritz 
et al. 2010), Spur-thighed Tortoise, Testudo graeca 
(Werner et al. 2015), and Hermann’s Tortoise, Testudo 
hermanni (Willemsen and Hailey 1999).  Taken together 
these data argue that selective pressures for larger body 

size in turtles at higher latitudes (and presumably colder 
temperatures) are nearly universal within wide-ranging 
turtle species, strengthening the earlier conclusion of 
Ashton and Feldman (2003).  Hence, future investigations 
of intraspecific variation in body size in turtles should 
shift from whether they follow Bergmann’s Rule, to 
why they do.  In addition, attention needs to be devoted 
to understanding the interaction between juvenile 
growth rate and size and age at maturity that produces 
the latitudinal body size pattern demonstrated for turtles.  
Further work will be needed to address the discrepancy 
concerning the application of Bergmann’s Rule across 
(rather than within) turtle species (e.g., Angielczyk et al. 
2015 versus Lindeman 2008).
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