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Abstract.—The influence of anthropogenic disturbance on anurans can be identified by fluctuating asymmetry (i.e., 
small random deviations from perfect symmetry), and by organosomatic indices (i.e., relative weights of the internal 
organs in relation to total body weight).  The aim of this study was to investigate the occurrence of environmental 
stress caused by agricultural activities in Leptodactylus macrosternum (Miranda’s White-lipped Frog) and 
Scinax x-signatus (Venezuela Snouted Treefrog) populations in the Brazilian semi-arid region in two agricultural 
areas and two non-agricultural areas.  We used fluctuating limb asymmetry and hepatosomatic, adiposomatic, 
and gonadosomatic indices as indicators of disturbance.  There was asymmetry only in the femur length of L. 
macrosternum and in the calcaneus-phalange length of S. x-signatus, but we observed no significant differences 
in asymmetry between the agricultural and non-agricultural areas.  There was wide variation among the four 
studied areas in the hepatosomatic, adiposomatic, and especially gonadosomatic indices of L. macrosternum, but no 
indication of a difference between individuals from agricultural and non-agricultural areas.  This suggests a possible 
relationship with unknown local environmental characteristics or ecological factors.  Moreover, L. macrosternum 
and S. x-signatus are species with generalist behavior that are well adapted to disturbed areas.  Thus, fluctuating 
asymmetry and organosomatic indices may not have been capable of detecting impacts, or the stressors that could 
affect them were simply not present in agricultural habitats.  Future studies focusing on histological variations 
in the gonads and evaluations of chemical contamination of organs tissue may give a better understanding of the 
possible impacts of agriculture on these populations.

Key Words.—anthropogenic disturbance; environmental stress; Leptodactylus macrosternum; Miranda’s White-Lipped 
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intrOductiOn

Anuran amphibians are among the living organisms 
most affected by the current biodiversity crisis 
(McCallum 2015), with declines and extinctions of 
some of their populations being reported worldwide 
(Gibbons et al. 2000; Stuart et al. 2004; Blaustein et 
al. 2011).  Agriculture has been cited as a major cause 
of biodiversity loss due to the expansion of cultivated 
areas and pastures, irrigation practices, and the use of 
fertilizers and pesticides (Foley et al. 2011).  In addition, 
other changes caused by agropastoral activities, such 
as habitat reduction and fragmentation, temperature 
increase, and fluctuations in the pH level of the aquatic 
environment, may also impact amphibians (Beebee et 
al. 1990; Clarke 1993; McCoy and Harris 2003; McCoy 
et al. 2008).  Indeed, there is increasing evidence 
linking declining anuran populations with proximity to 
agricultural areas (Sparling et al. 2001; Stuart et al. 2004; 
Eterovick et al. 2005; Silvano and Segalla 2005; Becker 
et al. 2007).  Amphibians are effective bioindicators 
of environmental health because they inhabit both 
terrestrial and aquatic environments and are sensitive 
to local factors such as water quality and microhabitat 

availability (Pope et al. 2000).  Features such as high 
abundance, wide distribution, resolved taxonomy, 
and low dispersal ability increase the potential of an 
organism as a bioindicator (Hellawell 1986; Rainio and 
Niemelä 2003).  This potential is greater in species that 
respond to environmental stress through changes in 
morphological attributes (Johnson et al. 1993).  

The influence of anthropogenic disturbance on 
anurans can be identified, among other ways, through 
morphometric indicators such as fluctuating asymmetry 
(Zhelev et al. 2015a; Eisemberg and Bertoluci 2016; 
Costa et al. 2017) and organosomatic indices (Tête et al. 
2013; Zhelev et al. 2014, 2015b).  According to Palmer 
(1994), fluctuating asymmetry (FA) results from pattern 
of perfect bilateral symmetry variation in a sample 
of individuals where the mean of the right minus the 
left value of the bilaterally paired trait is zero and the 
variation has a normal distribution about that mean, 
and FA can serve as a biomarker of developmental 
instability.  Fluctuating asymmetry reflects long-term 
changes in the body state of these organisms when 
extreme temperatures (Parsons 1990) or contaminants 
(Polak 2003) for example, cause instability during 
autogeny (Palmer 1994; Amaral et al. 2012).  Fluctuating 
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asymmetry may be important in evolutionary and 
ecological studies in providing valuable information on 
the adaptation of organisms or populations to particular 
environments (Graham et al. 2010; St-Amour et al. 
2010).  Several studies demonstrate the utility of FA 
for evaluating environmental stress in invertebrate and 
vertebrate species (Bonada and Williams 2002; Lens et 
al. 2002).  At the same time, there are several studies 
that question the use of FA as a reliable indicator of 
environmental stress, and they suggest that several more 
questions need to be addressed before it can be used 
with confidence (Floate and Fox 2000; Lens et al. 2002; 
Longson et al. 2007; Floate and Coghlin 2010; Beasley 
et al. 2013).

Organosomatic indices, in turn, are the weights of 
internal organs relative to total body weight, and it can 
also be used to estimate individual fitness conditions 
(Norrdahl et al. 2004).  The hepatosomatic index (HSI), 
which expresses liver size as a percentage of total body 
weight, may signal liver conditions, and a change in 
value usually indicates an effect of chemical exposure 
on liver function (Brodeur et al. 2011; Paunescu and 
Ponepal 2011) or energy production through glycogen 
metabolism (Barton 1987; Goede and Barton 1990).  
The glycogen is a storage form of energy through a very 
large, branched polymer of glucose residues that can be 
broken down to yield glucose molecules when energy is 
needed (Berg et al. 2002).  Changes in HSI values may 
also indicate exposure to any kind of oxidative stress 
(Brodeur et al. 2012) that occurs when excess oxygen 
radicals are produced in cells, which could overwhelm 
the normal antioxidant capacity (Gagné 2014).  The 
adiposomatic index (ASI), which expresses fat body 
size as a percentage of total body weight, is linked to 
energy reserves too, in the form of fat bodies, and it also 
varies in different environmental situations, mainly in 
pre-reproductive periods, when there is a large energy 
expenditure for gonadal maturation (Navarro et al. 2005; 
Chaves et al. 2017).  The gonadosomatic index (GSI), 
which expresses gonads size as a percentage of total 
body weight, provides information on both reproductive 
maturity and seasonal weather changes or exogenous 
stress, such as exposure to contaminants (Schmitt and 
Dethloff 2000).  Organosomatic indices are widely used 
in biomonitoring studies of environmental stress in fish 
(Adams and McLean 1985; Schmitt and Dethloff 2000; 
Kleinkauf et al. 2004; Dekić et al. 2016; Araújo et al. 
2018), and are also studied in amphibians (Brodeur et al. 
2011; Păunescu and Ponepal 2011; Zhelev et al. 2014). 

The objective of this study was to evaluate the role 
that agricultural activities may have in influencing 
development for two populations of anuran species, 
Leptodactylus macrosternum (Miranda's White-
lipped Frog) and Scinax x-signatus (Venezuela 
Snouted Treefrog).  We used FA (for both species) 

and organosomatic indices (for L. macrosternum) as 
bioindicators of possible agricultural stressor exposure.  
We expected that nearness to agriculture would elicit 
stress in these organisms; thus, we also expected that this 
stress could be detected using FA and hepatosomatic, 
gonadosomatic, and adiposomatic indices. 

materials and methOds

Study site.—We conducted the study in the 
municipality of Tabuleiro do Norte, in the Lower 
Jaguaribe River region, Ceará state, Brazil (Fig. 1).  
The morphoclimatic domain is Caatinga, in which 
the vegetation consists of mosaics of thorny shrubs 
interspersed with seasonally dry forest (Ab'sáber 1977).  
The annual averages of temperature and precipitation are 
26°–28° C and 794.8 mm, respectively, and the climate of 
the region is tropical hot semi-arid (Instituto de Pesquisa 
e Estratégia Econômica do Ceará [IPECE]. 2017. Perfil 
municipal. IPECE, Brazil. Available from https://www.
ipece.ce.gov.br/wpcontent/uploads/sites/45/2018/09/
Tabuleiro_do_Norte_2017.pdf [Accessed 8 September 
2019]).  We chose this region in Ceará because it is 
an important area of agribusiness, having the largest 
irrigation complexes in the state (Milhome et al. 2009; 
Gama et al. 2013).

We selected two areas that were undisturbed by 
agricultural activity (Area I, UTM 24M 0594570, 
9415959; Area II, UTM 24M 0587910, 9409430) and 
two in which the agricultural activity is intense (Area 
III, UTM 24M 0596531, 9423803; Area IV, UTM 24M 
0598188, 9422750).  Areas I and II served as control 
areas, with herbaceous, shrubby vegetation around water 
bodies.  Areas III and IV are environmentally impacted 
by agropastoral land use.  The plant species grown in 
these areas are rice, beans, corn, bananas, and pasture 
grasses, the principal crops of irrigated agriculture in 
the Lower Jaguaribe River region (Gondim et al. 2004).  
We selected cultivated areas sufficiently distant from the 
control areas (7,697–16,829 m; Table 1). 

Study species.—Leptodactylus macrosternum is 
widely distributed in South America east of the Andes, 
extending from Colombia, Venezuela, and Guyana 
southwards through Brazil and Bolivia (American 
Museum of Natural History. 2019. Amphibian 
species of the world: an online reference. Version 6.0. 
American Museum of Natural History, New York, 
New York, USA. Available from http://research.amnh.
org/vz/herpetology/amphibia/ [Accessed 8 September 
2019]).  It occurs in many habitats, including savannas, 
grasslands, open habitats in dry areas, forest margins, 
and along riverbanks in Tropical Rainforests (University 
of California, Berkeley. 2018. Amphibiaweb. University 
of California, Berkeley, USA. Available from https://
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amphibiaweb.org, [Accessed 6 October 2018]).  This 
species is extremely common, abundant, and well 
adapted to disturbed areas (De La Riva and Maldonado 
1999).  Scinax x-signatus is also widely distributed 
in South America, occurring in non-forested areas of 
Colombia, Venezuela, Guyana, Suriname, and Brazil 
(American Museum of Natural History. 2019. op. 
cit.).  It inhabits tropical savannas, forest margins, and 
open areas (International Union for Conservation of 
Nature 2018).  This species is also common in semi-
arid environments and disturbed areas (Borges-Nojosa 
and Cascon 2005; Santana et al. 2015).  We chose L. 
macrosternum and S. x-signatus based on the criteria 
of highest abundance (verified during pilot collections) 
and different habitat use (terrestrial and arboreal, 
respectively).

Data collection.—We conducted the fieldwork 
during the rainy season, over 15 d in May and June 
2017.  We collected specimens through active search 
during the night, from 1800 to 2200.  We collected 
approximately 30 individuals per species in each area, 
which is considered the minimum sample number in FA 
studies (Palmer 1994).  We then weighed the subjects 
with precision scales (0.01 g) and euthanized them with 
the following anesthetics: lidocaine ointment 50 mg/g 
for S. x-signatus and intracardiac injection of lidocaine 
hydrochloride for L. macrosternum.  We used a dose 
of 30 mg/kg, corresponding to six times the maximum 

anesthetic dose cited by Chatigny et al. (2017), and 
as directed by the Brazilian National Council for 
Animal Experimentation Control - CONCEA (Animal 
Experimentation Control [CONCEA]. 2019. Resolução 
Normativa nº 13/2013. Available from https://
www.mctic.gov.br/mctic/export/sites/institucional/
institucional/concea/arquivolegislacao/resolucoes_
normativas/Resolucao-Normativa-CONCEA-n-13-de 
20.09.2013 D.O.U.-de-26.09.2012-Secao-I-Pag.-5.pdf 
[Accessed 21 February 2019]).  We dissected these 
animals to determine sex (through direct observation 
of the gonads), and removed and weighed the gonads, 
fat bodies, and liver to determine the organosomatic 
indices.  We fixed the specimens with 10% formaldehyde 
solution, preserved them in 70% ethyl alcohol, and 
added them to the Herpetology Collection of the Federal 
University of Ceará (CHUFC), Brazil.

Figure 1.  The location of Ceará state, Brazil (CE on inset maps), highlighting the Lower Jaguaribe River microregion (the polygon in the 
Ceará map) and collection areas (red-filled circles).  Abbreviations are A = Area I (control), B = Area II (control), C = Area III (cultivated), 
D = Area IV (cultivated), and RN = State of Rio Grande do Norte.  Coordinates on the border of the map are in UTM.  (Map created by 
GeoMaps Consultoria, Fortaleza, Ceará, Brazil).

Area I Area II Area III

Area I —

Area II 9,329 m —

Area III 8,087 m 16,765 m —

Area IV 7,697 m 16,829 m 1,964 m

taBle 1.  Geographical distance (m) among the four study areas 
sampled for Leptodactylus macrosternum (Miranda's White-
lipped Frog) and Scinax x-signatus (Venezuela Snouted Treefrog), 
located in Tabuleiro do Norte, Ceará, Brazil.  Area types are Area 
I: control; Area II: control; Area III: cultivated; Area IV: cultivated.
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Laboratory procedures.—In the laboratory, we 
measured the snout-to-vent length (SVL) and the lengths 
on both sides of the radius-ulna, humerus, calcaneus 
to phalange (from calcaneus to distal tip of the largest 
phalange), tibia-fibula, and femur (Fig. 2) of all specimens 
with a digital caliper (accuracy 0.01 mm).  We used these 
five morphometric parameters because of their visible 
osteological characteristics in unprepared specimens.  A 
single researcher took each measurement three times to 
test whether the FA exceeded the measurement error, and 
we analyzed the data following the recommendations of 
Palmer and Strobeck (1986) and Palmer (1994).

Determination of fluctuating asymmetry.—There 
are three main types of bilateral asymmetry: fluctuating 
asymmetry (FA), directional asymmetry (DA), and anti-
symmetry (AS; Palmer and Strobeck 1986, 1992, 2003; 
Palmer 1994).  The FA is a pattern of variation of the 
difference between the right and left sides (R - L) where 
the variation is usually distributed around an average of 
zero.  The DA is a pattern of variation (R - L) where 
variation is usually distributed around an average that 
is significantly different from zero and the longer side 
is usually the same.  The AS is a pattern of variation (R 
- L) where variation is distributed around an average of 
zero but deviates from normality towards a platykurtic 
or bimodal distribution, where the larger side varies 
randomly among individuals (Palmer and Strobeck 
1986, 1992, 2003; Palmer 1994).

We therefore conducted a set of analyses to detect 
DA and AS, along with FA, for each measurement of 
each species separately, as DA and AS can influence 
the FA estimate.  We performed analyses to detect the 
measurement error (ME) and the relationship between 

the size of the morphometric traits and FA (Palmer 1994; 
Palmer and Strobeck 2003).  We maintained positive 
and negative outlier values because they are expected in 
FA studies, and they may have a biological significance 
(Palmer and Strobeck 1986; Leung and Forbes 1996; 
Hardersen 2000).  We determined whether the variation 
between R and L sides was significantly greater than the 
measurement error (Palmer and Strobeck 1986) using 
a Two-way Analysis of Variance (ANOVA) test on 
individual and morphological trait sides (R or L).  In this 
analysis, we observed whether the interaction between 
the two factors was significant, indicating the absence 
of measurement error.  In the subsequent analysis, we 
determined asymmetry by subtracting the mean of the 
three measurements of the right side by the mean of the 
three measurements of the left side of the radius-ulna 
(RUL), humerus (HL), tibia-fibula (TFL), femur (FL), 
and calcaneus to phalange (CPL) lengths.  We applied 
the Kolmogorov-Smirnov test to determine whether 
the frequency distribution of the R - L measurements 
was normal, thereby determining the presence of anti-
symmetry.  We verified the presence of DA with a one-
sample t-test, where we tested R - L scores against a 
predicted mean of zero.  We also used Pearson's correlation 
to determine if there was a relationship between the mean 
size of the individual morphological character (R + L)/2 
and the level of FA.  Tests for DA and AS are important 
because they can determine if the asymmetry detected in 
a particular morphological trait has a genetic component.  
These types of asymmetries are related to the condition 
of the species, which may always have one side larger 
than the other (Valen 1962; Palmer 1994) and would 
therefore not be suitable for indicating the impact of a 
stressor on individuals.  Finally, we used a Kruskal-Wallis 
test to determine whether the study areas differed in the 
FA modulus (| R − L |) for the morphological traits that 
presented FA, according to the previous analyses.  We 
performed statistical analysis using the program R (R 
Development Core Team. 2014) and for all tests α = 0.05.  
All assumptions of parametric tests were met.

Determination of organosomatic indices.—We also 
used the hepatosomatic (HSI), gonadosomatic (GSI), 
and adiposomatic (ASI) indices in the analyzes of L. 
macrosternum.  The small body size of S. x-signatus 
resulted in the absence of several data and, consequently, 
in a very small sample, making the analysis unfeasible.  
We calculated the indices according to the following 
equations

HSI = (liver weight/total weight) × 100;

GSI = (weight of gonads/total weight) × 100; 

ASI = (fat body weight/total weight) × 100.

Figure 2.  Morphometeric parameters analyzed for fluctuating 
asymmetry in Leptodactylus macrosternum (Miranda's White-
Lipped Frog) and Scinax x-signatus (Venezuela Snouted 
Treefrog).  (Schematic drawing made using the Pencil Sketch 6.7 
application app by Dumpling Sandwich Software Inc., Saskatoon, 
Saskatchewan, Canada). 
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We used a Kruskal-Wallis test to compare the values of 
each organosomatic index among areas and to assess 
whether significant differences occurred at α = 0.05.  We 
performed a posteriori comparisons using Dunn tests 
with Benjamini-Hochberg correction method. 

results

Fluctuating asymmetry.—The variation between 
right and left sides was significantly greater than the 
measurement error for FL and CPL in L. macrosternum, 
and for FL, CPL, and RUL in S. x-signatus.  The 
measurement errors for the other morphological traits 
did not allow asymmetry to be properly calculated 
(Table 2).  There was no significant relationship between 
asymmetry and the size of the morphological character 

for FL and CPL in either species.  These morphological 
traits also showed no significant deviation of R and L 
side differences from a normal distribution, indicating 
the absence of AS in both species (Table 2).  The absence 
of DA was also confirmed by the one-sample t-test in 
L. macrosternum FL and S. x-signatus CPL.  The DA 
was identified, however, in L. macrosternum CPL and 
S. x-signatus FL (Table 2).  Because we only identified 
FA in L. macrosternum FL and S. x-signatus CPL, we 
only compared these two traits among the four sampled 
areas.  We found no significant differences in these traits 
among areas (L. macrosternum FL: H = 4.50; df = 3; 
P = 0.212; S. x-signatus CPL: H = 6.01; df = 3; P = 
0.111).  The mean of the FA values of the individuals 
of L. macrosternum for FL were: control area I = 0.079, 
control area II = 0.098, cultivated area III = 0.071, and 

Species/Morphological trait Measurement error Size dependence Normality Directional asymmetry

Leptodactylus macrosternum     

FL F122, 491 = 2.308

P < 0.001

R = -0.065, df = 121

P = 0.477

D = 0.040

P = 0.908

t = -1.542, df = 122

P = 0.126

TFL F122, 490 = 1.030

P = 0.408

x x x

CPL F122, 491 = 1.290

P = 0.032

R = -0.086, df = 121

P = 0.336

D = 0.049

P = 0.666

t = 2.335, df = 122

P = 0.021

RUL F122, 490 = 1.155

P = 0.147

x x x

HL F122, 488 = 0.846

P = 0.869

x x x

Scinax x-signatus

FL F118, 476 = 1.441

P = 0.004

R = -0.027, df = 117

P = 0.768

D = 0.058

P = 0.411

t = -3.380, df = 11

P = 0.001

TFL F118, 476 = 1.087

P = 0.271

x x x

CPL F118, 476 = 1.515

P = 0.001

R = 0.102, df = 117

P = 0.268

D = 0.06

P = 0.324

t = -0.423, df = 118

P = 0.673

RUL F118, 476 = 1.474

P = 0.003

R = -0.212, df = 117

P = 0.021*

D = 0.106

P = 0.002

t = -1.997, df = 118

P = 0.048

HL F118, 476 = 1.09

P = 0.252

x x x

taBle 2.  Adequacy of the five morphological traits of Leptodactylus macrosternum (Miranda's White-lipped Frog) and Scinax x-signatus 
(Venezuela Snouted Treefrog) for fluctuating asymmetry (FA) analysis.  Results of statistical analysis in bold highlight traits that passed 
the specific test represented in the column, and bold morphological traits are those that passed all the tests.  Thus, they are adequate to 
evaluate FA.  The X represents traits not further evaluated and excluded due to measurement error.  Abbreviations are FL = femur length, 
TFL = tibia-fibula length, CPL = calcaneus to phalange length, RUL = radius-ulna length, HL = humerus length.  An asterisk (*) indicates 
a non-parametric RUL correlation of S. x-signatus: rho = ˗0.056, P = 0.546.
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cultivated area IV = 0.074.  The mean of the FA values 
of the individuals of S. x-signatus for CPL were: control 
area I = 0.071, control area II = 0.043, cultivated area III 
= 0.056, and cultivated area IV = 0.062 (Fig. 3).  

Organosomatic indices.—The organosomatic indices 
of L. macrosternum varied significantly among the four 
study sites (HSI: H = 31.93, df = 3, P < 0.001; ASI: H 
= 19.34, df = 3, P < 0.001; GSI: H = 13.79, df = 3, P = 
0.003; Fig. 4).  Values of the HSI and ASI in control areas 

I (mean HSI = 2.40, mean ASI = 2.76) and II (mean HSI = 
2.30, mean ASI = 2.93), and cultivated area IV (mean HSI 
= 2.17, mean ASI = 3.74) were significantly higher than 
those in cultivated area III (mean HSI = 1.71, mean ASI 
= 0.81, Table 3; Fig. 4).  Values of GSI from control area 
I (mean 2.67) and from cultivated area III (mean 3.35) 
were also significantly higher than from control area II 
(mean 1.60) and from cultivated area IV (mean 0.70, 
Table 3; Fig. 4).

Figure 4.  Variation in (A) hepatosomatic index (HSI), (B) 
adiposomatic index (ASI), and (C) gonadosomatic index (GSI) in 
Leptodactylus macrosternum (Miranda's White-Lipped Frog) for 
the study sites: Area I: control; Area II: control; Area III: cultivated; 
Area IV: cultivated.  Horizontal lines in the boxes are the medians.  
Areas with the same lowercase letters are not significantly different 
in organosomatic indices (see Table 3 for more details).  Thick 
horizontal bars represent the medians of the samples.  Upper and 
lower bounds of the boxes represent respectively the upper and 
lower quartile.  Horizontal lines outside the boxes represent values 
within 1.5 times the interquartile range.  Open circles are outliers, 
and solid red circles are mean.  Sample sizes of L. macrosternum 
are Area I (HSI: n = 31, ASI: n = 24, GSI: n = 12), Area II (HSI: 
n = 31, ASI: n = 28, GSI: n = 18), Area III (HSI: n = 30, ASI: n = 
18, GSI: n = 4), Area IV (HSI: n = 30, ASI: n = 23, GSI: n = 10).

Figure 3.  Variation in absolute fluctuating asymmetry (FA) for 
femur length in (A) Leptodactylus macrosternum (Miranda's 
White-Lipped Frog) and (B) calcaneus to phalange length 
in Scinax x-signatus (Venezuela Snouted Treefrog) for the 
four study sites: Area I: control; Area II: control; Area III: 
cultivated; Area IV: cultivated.  Thick horizontal bars represent 
the medians of the samples.  Upper and lower bounds of the 
boxes represent the upper and lower quartiles, respectively.  
Horizontal lines outside the boxes represent values within 1.5 
times the interquartile range.  Open circles are outliers, and solid 
red circles are mean values.  Sample sizes of L. macrosternum 
are Area I: n = 31, Area II: n = 32, Area III: n = 30, Area IV: n 
= 30 and S. x-signatus are Area I: n = 30, Area II: n = 30. Area 
III: n = 30, Area IV: n = 29.
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discussiOn

Although FA has been proposed as a biomonitoring 
tool for populations subjected to natural and 
anthropogenic stress (Parsons 1990, 1992; Sarre et al. 
1994; Palmer 1996; Guillot et al. 2016), it may not be 
able to distinguish such stress (Tomkins and Kotiaho 
2002).  We found FA in only two morphological traits 
(L. macrosternum FL and S. x-signatus CPL), but 
without variation among study sites.  We also found 
DA in the CPL of L. macrosternum and FL of S. 
x-signatus.  Directional asymmetry and AS usually arise 
in studies of FA (Graham et al. 1998; Helm and Albrecht 
2000; Gallant and Teather 2001; Malashichev 2002; 
Eisemberg and Bertoluci 2016).  The FA finding in only 
two morphological traits may indicate that the frogs are 
tolerant of environmental disturbances.  Species in the 
genera Leptodactylus and Scinax have been identified 
as tolerant to high levels of agricultural expansion and 
intensification (Silva et al. 2009; Suárez et al. 2016).  
This also seems to be the case for L. macrosternum 
and S. x-signatus, which are species very well adapted 
to habitat modification and anthropogenic disturbance 
(De La Riva and Maldonado 1999; Borges-Nojosa and 
Cascon 2005; Santana et al. 2015; Chaves et al. 2017).  
Thus, the FA may not have been able to evidence the 
environmental stresses related to agricultural activities.  
Although we have assumed their existence, there is a 
possibility that the stressors that could affect FA were 
simply not present in agricultural habitats.  Levels of 
FA also did not vary among areas with different degrees 
of habitat disturbance in Eleutherodactylus antillensis 
(Puerto Rican Red-eyed Frog) and E. coqui (Puerto 
Rican Coqui; Delgado-Acevedo and Restrepo 2008) 
and FA was observed in only one morphological trait 
in Physalaemus cuvieri (Barker Frog; Eisemberg and 

Bertoluci 2016).  The susceptibility to a particular 
stressor and the propensity to deviate from symmetry 
may differ among individuals and populations in 
different localities (Sanseverino and Nessimian 2008), 
and different anurans species may be associated with 
agricultural intensity in a variety of ways, both negative 
and positive (Knutson et al. 2004; Piha et al. 2007; 
Koumaris and Fahrig 2016; Oda et al. 2016; Suárez et al. 
2016).  In field studies, organisms are exposed to many 
environmental factors that can escape observation and 
detection by FA (Bjorksten et al. 2000; Floate and Fox 
2000).  Although there are FA studies that question its 
use and recommend caution (Beasley et al. 2013; Costa 
and Nomura 2016; Niemeier et al. 2019), various works 
have made efforts to evaluate the effectiveness of FA as 
a biomonitoring instrument in anurans (Eterovick et al. 
2015; Matías-Ferrer and Escalante 2015; Eisemberg and 
Bertoluci 2016; Guillot et al. 2016).

The designation of populations not impacted by FA 
can be problematic as most habitats are in complex 
ecosystems and subject to multiple underlying 
stressors (McCoy and Harris 2003; Sanseverino and 
Nessimian 2008).  Sanseverino and Nessimian (2008) 
state that choosing control areas at a distance from 
the studied stressor is often impractical due to the 
difficulty of matching the environmental characteristics 
(same habitat types, comparable physicochemical 
characteristics, etc.).  The areas sampled in this study 
are within the same semi-arid region, and thus have 
similar environmental characteristics.  We selected 
study sites seeking to ensure as much as possible that 
the populations sampled were independent.  Anurans 
have limited dispersal capacity (Munguía et al. 2012) 
and cannot typically cover distances greater than 2 km 
(Smith and Green 2005; Piatti et al. 2010).  Thus, we 
consider the cultivated areas sufficiently distant from 

HSI ASI GSI

Comparison Z P.unadj P.adj Z P.unadj P.adj Z P.unadj P.adj

Area I – Area II 1.508 0.131 0.158 -0.09 0.929 0.929 2.855 0.004 0.026

Area I – Area III 5.409 < 0.001 < 0.001 3.233 0.001 0.002 -0.236 0.813 0.813

Area II – Area III 3.913 < 0.001 < 0.001 3.419 0.001 0.002 -2.171 0.03 0.045

Area I – Area IV 1.526 0.127 0.191 -1.038 0.299 0.449 2.855 0.004 0.013

Area II – Area IV 0.03 0.976 0.976 -0.988 0.323 0.388 0.401 0.688 0.826

Area III – Area IV -3.852 < 0.001 < 0.001 -4.166 < 0.001 < 0.001 2.296 0.022 0.043

taBle 3.  A posteriori comparisons among sites using Dunn tests to evaluate differences in hepatosomatic index (HSI), adiposomatic 
index (ASI), and gonadosomatic index (GSI) in Leptodactylus macrosternum for the study sites.  Sites are Area I: control; Area II: control; 
Area III: cultivated; Area IV: cultivated.  Abbreviations are = P.unadj = P-values unadjusted; P.adj = P-values adjusted according to the 
Benjamini-Hochberg method.
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the control areas, with a minimum distance of 7,697 m. 
Several morphological traits did not meet the 

requirements of the statistical tests to obtain the FA 
index, that is, they presented measurement error, 
size dependence, anti-symmetry, and/or directional 
asymmetry.  Detection of asymmetry can be hampered 
by the reliability of the measurements; measurements are 
difficult to perform on both live and preserved animals, 
even with all due attention to accuracy (Bjorksten et 
al. 2000; Helm and Albrecht 2000; McCoy and Harris 
2003; Eisemberg and Jaime Bertoluci 2016).  Therefore, 
following the recommendation by Delgado-Acevedo 
and Restrepo (2008) not to focus solely on asymmetric 
features to monitor amphibians, we also evaluated the 
organosomatic indices of L. macrosternum.

There was a tendency for the HSI and ASI values 
to be higher in control areas than in cultivated areas, 
except in area IV, where the values were similar to those 
in the control areas.  The GSI, in turn, did not show a 
well-defined trend, showing higher values in control 
area I and cultivated area III, and also lower values in 
both area types, control area II and cultivated area IV.  
The HSI, ASI, and especially the GSI results therefore 
showed wide variation among the four areas studied, but 
with no indication of a difference between individuals 
from agricultural and non-agricultural areas.

The relationship between the weight of the body and 
the organs (such as the liver, fat bodies, and gonads), 
can be influenced by exposure to some pollutant 
(Kanamadi and Saidapur 1992; Paunescu and Ponepal 
2011; Paunescu et al. 2018) and by season (Brown et al. 
2011; Chaves et al. 2017), diet quality, energy dynamics 
(Brown et al. 2011), or reproductive status (Ebert et al. 
2011; Franco-Belussi et al. 2012; Chaves et al. 2017).  
Although variation in the size of these organs occurs 
throughout the life cycle of most species (Brown et al. 
2011; Sadekarpawar and Parikh 2013; Chaves et al. 
2017), the differences found in this study are unlikely 
to be seasonal, or related to reproductive processes, as 
we collected all the samples at the same time.  The liver 
is the organ where, in addition to the production and 
storage of glycogen as an energy reserve, xenobiotic 
accumulation and detoxification also occur (Fabacher 
and Baumann 1985; Crawshaw and Weinkle 2000; 
Păunescu and Ponepal 2011; Thammachoti et al. 2012).  
The HSI is one of the organosomatic indices most 
associated with exposure to contaminants (Adams and 
McLean 1985; Goede and Barton 1990; Sadekarpawar 
and Parikh 2013).  This exposure usually leads to an 
increase in liver size (hypertrophy) or an increase in 
hepatocyte numbers (hyperplasia; Goede and Barton 
1990; Solé et al. 2010).  

In contrast, our study found higher HSI values in 
non-agricultural areas and a lower value in one of the 
areas considered disturbed by agriculture.  Although 

we did not investigate the pesticide concentrations 
at the collection sites, or in the tissues of the sampled 
individuals, studies in fish observed a decrease in HSI 
in fish after exposure to contaminants in the laboratory 
(Barton et al. 1987; Ma et al. 2005, and Sadekarpawar 
and Parikh 2013).  A decrease in HSI values may 
also occur due to the breakdown of glycogen energy 
reserves, stored in the liver (Barton et al. 1987; Goede 
and Barton 1990).  The variation of ASI values among 
areas was equivalent to that of HSI, which also suggests 
the use of energy reserves, given that fat bodies provide 
an energy source in different environmental situations, 
such as food scarcity or in reproductive periods 
(Navarro et al. 2005; Chaves et al. 2017).  Finally, GSI 
had the highest variation among areas.  This may be 
explained, according to Schmitt and Dethloff (2000), 
because GSI can provide information on reproductive 
maturity, responses to environmental dynamics (e.g., 
seasonal changes), or exogenous stress (e.g., exposure 
to contaminants).  Although it is one of the anuran 
biomonitoring tools (Păunescu and Ponepal 2011; 
Zaripova and Fayzulin 2012; Kitana et al. 2015; Zhelev 
et al. 2015b), the accuracy and reliability of the GSI 
has been treated with caution due to its high variation 
among studies (De Vlaming et al. 1981; Zhelev et al. 
2014).  Therefore, the organosomatic results suggest a 
possible relationship with unknown local environmental 
characteristics or ecological factors, as also reported by 
Tête et al. (2013).

The populations of L. macrosternum and S. x-signatus 
have shown, through FA and organosomatic indices 
(evaluated only in L. macrosternum), to be little impacted 
by areas of agricultural crops.  These species, being 
tolerant to environmental disturbances and well adapted 
to habitat modification and anthropogenic disturbance, 
may not have been able to evidence the impacts through 
the morphological parameters used.  Another possible 
explanation is that stressors that could affect these 
parameters were not present in agricultural habitats.  
Future studies focusing on histological variations in the 
gonads and evaluation of chemical contamination of the 
organs, such as liver and fat bodies, may give a better 
understanding of the possible impacts of agriculture on 
these populations.
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