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Abstract.—The Eastern Massasauga Rattlesnake (EMR; Sistrurus catenatus) is Federally listed in the USA as 
Threatened.  Traditional visual encounter and artificial cover object survey techniques for this species are effective 
but require intensive field effort.  The Adapted-Hunt Drift Fence Technique (AHDriFT) is a camera trap and drift 
fence system able to effectively image reptiles, including snakes.  We modified AHDriFT for use in EMR habitats 
and assessed its potential as a new EMR survey tool relative to traditional methods.  We derived EMR population 
size estimates in 13 wet meadow fields in northern Ohio, USA, from 3 y of traditional capture-mark-recapture 
surveys.  We deployed one AHDriFT array (three cameras) per field from March to October 2019.  We obtained 72 
EMR detections across 12 fields.  Our data suggest that total detection counts may increase with greater population 
density.  Detection probability estimates in each field were typically under 0.30 per week.  Weekly detection 
probability, however, rose to 0.40 during peak periods of EMR activity in the fall.  Weekly detection probability 
also varied by as much as 0.10 due to temperature fluctuations.  We estimated 0.48 EMR per person-hour using 
AHDriFT.  This detection rate is comparable to published EMR survey data and greater than the detection rates 
from our traditional surveys.  Further, AHDriFT may be better suited for a wider range of habitat types than 
traditional methods.  Overall, we found that AHDriFT is an effective new EMR occupancy survey technique.
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Introduction

The Eastern Massasauga Rattlesnake (EMR; 
Sistrurus catenatus) is a small (typically < 70 cm 
total length) stout-bodied rattlesnake with populations 
centered around the North American Great Lakes 
region.  They are considered endangered across nearly 
all of their historical range (Syzmanski et al. 2016) 
and are Federally listed as Threatened (U.S. Fish and 
Wildlife Service [USFWS] 2016).  The species requires 
open-canopy early successional mixed-herbaceous 
grassland, meadow, or prairie that encompasses or 
is adjacent to wetlands that host burrowing crayfish 
(Moore and Gillingham 2006; Smith 2009; Ernst and 
Ernst 2011; Gibbons 2017; Lipps and Smeenk 2017).  
Narrow habitat requirements make EMR vulnerable to 
habitat loss through vegetative succession, a primary 
driver of population declines (Szymanski et al. 2016).  
Today, extant populations are generally small, isolated, 
and located on protected properties (Lipps and Smeenk 
2017).

Rapid population declines have prompted extensive 
EMR spatial and habitat research (Szymanski et 
al. 2016), leading to the development of numerous 
habitat suitability models (Bissell 2006; Harvey and 
Weatherhead 2006; Moore and Gillingham 2006; 

Bailey et al. 2012).  The models aim to identify areas 
where EMR may occur so that conservation sites can 
be quickly delineated.  The habitat suitability models, 
however, are unable to reliably predict EMR occurrence 
and the predicted suitable habitat typically overestimates 
actual occupancy (McCluskey 2016; Lipps and Smeenk 
2017).  The discrepancy between predicted and actual 
occurrence may in part be because the models do not 
incorporate historical land uses or landscape resistances.  
Such influences include localized persecution of the 
species and barriers to movement such as roads and 
unsuitable habitat matrices (Chiucchi and Gibbs 2010; 
Willson 2016; McCluskey et al. 2018).  Therefore, 
effective EMR field surveys are critical to establish 
or validate site occupancy and monitor declining or 
fragmented populations.

The balance between field effort and obtaining snake 
detections is a common issue faced by researchers 
(McDiarmid et al. 2012).  Snakes are generally 
difficult to observe because they are secretive (Steen 
2010; Durso and Seigel 2015), cryptic, and can move 
slowly and infrequently (Greene 1997).  Traditional 
Visual Encounter Surveys (VES) and Artificial Cover 
Object (ACO) surveys are effective at detecting 
snakes and obtaining detailed data on individuals but 
require considerable time investment (Kéry 2002; 
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Dorcas and Willson 2009; McDiarmid et al. 2012).  
Visual Encounter Surveys entail walking sites or 
transects (McDiarmid et al. 2012).  Detection rates and 
probability can be influenced by observer identity if 
variation in detection skill among multiple observers is 
not adequately accounted for in the models (Dorcas and 
Willson 2009; Albergoni et al. 2016).  Artificial Cover 
Object surveys typically place plywood or corrugated 
metal sheets flat on the ground (McDiarmid et al. 2012).  
Temperate snakes thermoregulate by moving to areas of 
relative warmth or coolness compared to the ambient 
conditions (Greene 1997).  The ACO create attractive 
refugia for thermoregulation and congregate snakes 
that are otherwise difficult to find (McDiarmid et al. 
2012).  Detection probability, however, is variable 
by species, cover material, and length of deployment 
(Parmelee and Fitch 1995; Fitzgerald 2012; Willson 
2016).  Whether snakes are observed under ACO is 
also influenced by survey timing and environmental 
conditions (Joppa et al. 2009).

The EMR survey protocol that has been endorsed by 
the USFWS recommends at least 40 person-hours of 
VES per year for 10 y before the species can be declared 
absent (Gary Casper et al., unpubl. report).  The ACO 
(corrugated tin sheets) survey protocol for EMR by the 
state of Ohio, USA, requires about 25 weekly surveys 
without detections at a site to assume species absence 
(Lipps and Smeenk 2017).  Studies encompassing 
numerous sites or with limited time or resources may 
be unable to meet such requirements.  Further, not all 
studies require identification of individual animals or 
aim to obtain detailed data on individuals (e.g., sex, 
snout-vent-length, mass, reproductive state).  Therefore, 
camera trapping has been increasingly applied to 
herpetofauna surveys to reduce field effort when 
detection/non-detection data are of primary interest for 
more broadscale inference (e.g., occupancy; Guyer et al. 
1997; Merchant et al. 2013; Welbourne 2014; Colley et 
al. 2017).  

Camera traps are remotely operated cameras 
that image passing wildlife using a trigger, sensor, 
or timer.  Frequently used passive infrared (PIR) 
cameras activate when the sensor detects an infrared 
emission differential between the background and 
animal surfaces.  Thus, PIR sensors may not trigger 
if the infrared differential is less than the sensitivity 
threshold of the sensor (Welbourne et al. 2016).  
Ectotherm surface temperatures can be similar to 
background surface temperatures, resulting in small 
infrared differentials that PIR sensors can fail to detect.  
Due to trigger sensitivity issues, conventional open-air 
deployment of PIR camera traps is often ineffective for 
imaging ectotherms (Merchant et al. 2013; Welbourne 
2014; Welbourne et al. 2016).  Indeed, PIR camera 
traps have only had limited success when surveying 

for EMR in confined target areas such as ecopassages 
(Colley et al. 2017).  

A recently developed camera trap system, the 
Adapted-Hunt Drift Fence Technique (AHDriFT), was 
designed to image small-bodied mammals (e.g., mice, 
voles, shrews) and ectotherms in sand dunes in Florida, 
USA (Martin et al. 2017).  Modified inverted buckets 
containing PIR trail cameras are placed at the ends of a 
drift fence.  The buckets concentrate animals into a small 
detection zone, allowing for species-level identification 
(McCleery et al. 2014; Martin et al. 2017).  Further, the 
bucket lids raise PIR sensitivity by providing thermal 
homogeneity under the camera sensors (Welbourne et 
al. 2016).  Martin et al. (2017) found that AHDriFT 
reduced field effort compared to traditional techniques 
by 95% in surveys of small mammals and herpetofauna.  
Amber et al. (2020) also demonstrated this benefit but 
identified the trade-off of not obtaining detailed data on 
individual animals.

The AHDriFT system has shown great potential 
for implementation in snake occupancy surveys by 
detecting a range of species and size-classes (Martin 
et al. 2017; Amber et al. 2020).  During pilot testing, 
AHDriFT recorded three Pygmy Rattlesnake (Sistrurus 
miliarius) detections (Martin et al. 2017).  Pygmy 
Rattlesnakes are closely related to EMR, are of a 
comparable size, and have similar natural history 
characteristics (Ernst and Ernst 2011).  The detections 
provide preliminary evidence that AHDriFT can 
detect EMR, but AHDriFT has never been specifically 
deployed for EMR occupancy surveys.  There remains 
an unresolved potential for AHDriFT to reduce the field 
effort demanded by traditional EMR survey techniques 
(Lipps and Smeenk 2017).  Here, we report a novel 
application of AHDriFT as a new EMR survey tool.  
Our objectives were to: (1) determine EMR detection 
rate and detection probability using a single AHDriFT 
array per field; (2) assess how temporal, environmental, 
and spatial covariates influence AHDriFT detection 
probability; and (3) quantitatively compare AHDriFT to 
traditional EMR survey methods.

Materials and Methods

Study sites.—We selected fields where we or 
colleagues had previously conducted 3 y (2015–2017) 
of EMR capture-mark-recapture traditional surveys 
(unpubl. data).  We chose three areas in Ohio, USA, to 
deploy AHDriFT: one field in Huron County that was 
isolated by agriculture; two fields in Wyandot County 
that were separated by about 500 m of developed or 
agricultural matrix; and 10 fields in Ashtabula County 
within a 14-km2 area of the Grand River Lowlands of 
which eight fields were isolated by roads or agriculture.  
We considered two partially connected fields as separate 
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because prior research has shown limited exchange of 
individuals and high field fidelity (unpubl. data).  We 
therefore considered all of the fields in this study as 
independent.  The fields were covered by herbaceous 
vegetation such as goldenrods (Solidago spp.) and other 
forbs, with limited numbers of shrubs and small trees.  

We categorized our fields as two different geographic 
regions.  We grouped the Wyandot and Huron county 
fields as the southern region.  These fields are located in 
the prairie peninsula (Transeau 1935) and included species 
such as Cordgrass (Spartina pectinata), Big Bluestem 
(Andropogon gerardii), Little Bluestem (Schizachyrium 
scoparium), Indiangrass (Sorghastrum nutans), and Reed 
Canary Grass (Phalaris arundinacea).  We categorized 
the Ashtabula County fields as the northern region.  These 
fields were mostly sedge meadows dominated by sedges 
(Carex spp.) and rushes (Juncus spp.).  

Traditional surveys.—We completed over 400 
traditional VES and ACO surveys, totaling about 650 
person-hours.  We conducted VES and ACO surveys 
concurrently during each field visit.  We recorded a 
single number of person-hours for the field visit but 
tracked captures separately by method of observation.  
We conducted surveys over about 25 weeks per year, 
following established EMR survey protocols in Ohio 
(Lipps and Smeenk 2017).  The VES entailed one or 
more researchers walking fields for approximately 
30 min on average.  The ACO surveys consisted of 
corrugated tin sheets (2.4 × 0.6 m) set in linear transects 
that we checked at least once per week while conducting 
VES.  We set a tin density of 1–2 tin sheets/ha (Lipps 
and Smeenk 2017).  We estimated EMR population 
size (number of individuals) in each field following 
the Schnabel method (Chapman and Overton 1966) 
using the R package fishmethods (Nelson 2019; R 
Development Core Team 2019).

AHDriFT data collection.—We deployed 13 
AHDriFT arrays from 10 March to 6 October 2019.  
Each array operated for 210 survey days (30 survey 
weeks).  We built omni-directional Y-shaped AHDriFT 
arrays (Fig. 1) and placed one array at the geometric 
center of each field (three cameras per array, 39 total 
cameras) with one wing oriented to true north.  This 
construction protocol standardized our array deployment 
between fields and simulated the use of AHDriFT by 
researchers surveying a new location (i.e., without 
the prior field-level knowledge of EMR distributions 
and movements that we had available from previous 
studies).  We constructed arrays to withstand the dynamic 
environmental conditions of wet meadows, including 
wind, ice, flooding, and heat.  Detailed construction 
and deployment instructions are described elsewhere 
(Amber et al. 2020) and are also available as an open-

source online publication (https://doi.org/10.6084/
m9.figshare.12685763.v1).  We used Reconyx Hyperfire 
2 Professional PIR camera traps (model HP2X Gen3; 
Reconyx, Holmen, Wisconsin, USA) with focal lengths 
and flash customized by the manufacturer to 28 cm.  We 
selected camera settings of highest PIR sensitivity and 
three-round image burst.  We serviced arrays every two 
weeks to ensure that they were operating continuously. 

We equipped an iButton Hygrochron temperature/
humidity logger (model DS1923; Maxim Integrated, 
San Jose, California, USA) at each array, which 
recorded ground temperature (°C) and relative humidity 
(%) every 45 min.  We set iButtons 5 cm above 
ground-level with sensors aimed groundward to avoid 
submersion under water.  Equipment malfunctions, 
however, lost data prior to 11 June 2019.  Therefore, 
we downloaded hourly ambient temperature (°C) and 
relative humidity (%) data from the nearest National 
Oceanic and Atmospheric Administration (NOAA) 
weather stations starting from 10 March 2019.  Because 
overlapping iButton and NOAA data captured similar 
weather patterns in each field (Pearson’s r = 0.89–
0.93, P < 0.001), we determined that NOAA data was 
acceptable to use in our models for the dates prior to 
iButton malfunction.  We also downloaded daily NOAA 
precipitation (mm) data for the entire study period.  We 
averaged all weather data into weekly bins.  

We assessed eight covariates to account for spatial 
variation in detection probability (Appendix 1).  We 
quantified vegetation height and density at each array 
using a Digital Imagery Vegetation Analysis (DIVA; 
Jorgensen et al. 2013) in mid-July 2019.  We imaged 
the vegetation against a white poster board placed 
approximately 3 m from the ends of each array arm.  We 
set the camera at about 0.5 m above the ground to image 
ground-level vegetation.  We processed images in Adobe 
Photoshop (version CC-2018; Adobe Inc., San Jose, 
California, USA) by converting the vegetation to black 
pixels and recording the proportion of black pixels in 
the image (Jorgensen et al. 2013).  We then averaged the 
black pixel proportions of the images from each array 
arm to obtain a single DIVA score per array.  Higher 
DIVA scores represent taller and denser vegetation than 
lower scores.  

We extracted elevation, slope, and hydrologic flow 
rate using U.S. Geological Survey (USGS) 3 × 3 m 
digital elevation models (DEM) in ArcMap (version 
10.0; Esri, Redlands, California, USA).  We determined 
the dominant land cover at each array from field 
observations as either shrub/scrub or herbaceous cover.  
We created a GIS polygon layer of our fields in ArcMap 
and input the layer into the R package landscapemetrics 
(Hesselbarth et al. 2019) to determine field total areas, 
field edge habitat percentage, and distance of the arrays 
to forest edges.
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Analytical framework.—We processed AHDriFT 
camera trap images using the R package camtrapR 
(Niedballa et al. 2017) and considered all three cameras 
at an array as one sampling unit.  We defined detections 
as EMR images at a single array that were taken at least 
60 min apart.  The interval reduced the likelihood that 
EMR detections were inflated by one individual moving 
around an array within a short timeframe (Martin et al. 
2017).  On five occasions, we imaged two snakes within 
a 60 min interval at the same array (i.e., 10 total potential 
detections).  On these occasions, we attempted to use 
dorsal patterns to differentiate individuals.  We could 
not individually identify all snakes using this method, 
however, because snakes were not imaged under 
standardized conditions.  Five snakes only partially 
entered the buckets, the dorsal patterns of two snakes 
were obscured by water and debris, and one snake 
moved through the bucket at an angle along the internal 
guide boards.  Under these conditions where we could 
not reliably differentiate individuals, we only included 
only one of the two potential detections in the dataset.  
We were able to confidently differentiate individuals on 
one occasion and counted both of those detections.  

We fit Generalized Linear Mixed Effects models 
(glmm) to test the effects of spatial and temporal 
covariates on AHDriFT detection probability.  We built 
glmms using a Bayesian framework to account for 
small sample sizes using the R package brms (Bürkner 
2018).  We modeled detection probability using separate 
spatial and temporal models (Appendix 2).  We scaled 
and centered all continuous predictors to have a mean 
of zero and standard deviation of one.  We manually 
set all models with normally distributed priors with a 
mean of zero and standard deviation of 10.  We visually 
inspected model chains for mixing and used Gelman-
Rubin statistics (Rhat < 1.1) to confirm convergence 
(Cowles and Carlin 1996). We then assessed model fit 
with posterior predictive checks (Bürkner 2018).

We reduced our global additive models and selected 
our best-supported final models (Appendix 2) using 
the R packages bayestestR (Makowski et al. 2019) 
and ggeffects (Lüdecke 2018).  To step-wise reduce 
our models, we retained the variables whose posterior 
distributions did not or only marginally included 
zero.  We also checked if the variable had < 11% of 
its posterior distribution within the Region of Practical 

Figure 1.  Sample Eastern Massasauga Rattlesnake (Sistrurus catenatus) images taken using the Adapted-Hunt Drift Fence Technique 
(AHDriFT) in northern Ohio, USA, wet meadows: (A) Y-shaped AHDriFT array with inverted bucket units containing passive infrared 
trail camera traps; (B) adult with the typical patterning; (C) melanistic adult; (D) juvenile or young adult; (E) neonate. (Photographed by 
Evan D. Amber).
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Equivalence (ROPE; Piironen and Vehtari 2017).  A 
small proportion of the distribution within ROPE 
suggests that the variable likely had a meaningful effect 
on the response; however, we only used ROPE as a 
secondary assessment to inform decisions on potentially 
marginally significant or insignificant variables, and did 
not necessarily remove all variables with > 11% ROPE.

We conducted model selection of the candidate 
models using Watanabe-Akaike Information Criterion 
(WAIC) and Leave-One-Out (LOO) model weights, 
with the largest weight attributed to the most supported 
model (Vehtari et al. 2017).  We also used Bayes Factors 
to compare the likelihood of a model correctly capturing 
data variation relative to another (alternative) model.  
Large values (> 100) can be interpreted as extremely 
strong evidence supporting the tested model over the 
alternative model (Lee and Wagenmakers 2014).  We 
selected the best-supported model from among the 
global and candidate models as our final models for 
analysis.

To compare detection rates from AHDriFT and 
traditional methods, we considered one-week intervals 
as one AHDriFT survey.  We chose a one-week interval 
because VES and ACO surveys are usually conducted on 
weekly timeframes for Ohio EMR (Lipps and Smeenk 
2017).  Further, AHDriFT is designed to be serviced 
infrequently rather than daily (Martin et al. 2017), and 
so it would be impractical to consider one day of camera 
trap data as one survey.  We determined our AHDriFT 
detection rate from detections divided by person-hours 
of effort in the field and spent processing images.  We 
generated the detection rate of concurrent traditional 
surveys by totaling VES and ACO captures and dividing 
by field person-hours.  We generated detection rates for 
VES and ACO separately by dividing captures from 
each method by the same field person-hours (because 
we conducted traditional surveys concurrently).  We 
estimated detection rates from the EMR literature 
using the average or typically conducted survey effort 
reported.  Effort and detection data were not consistently 
or uniformly reported and so our estimates from the 
published literature may contain additional error.

Spatial analysis.—The spatial models fit non-
temporal field-level covariates (N fields = 13) with 
EMR population size estimates grouped by geographic 
region (see Study sites above) as random slopes and 
with geographic region as random intercepts.  We fit 
two models under this framework.  First, we modeled 
the number of EMR detections at each field using a 
Poisson glmm.  Second, we assessed the number of 
weeks that AHDriFT detected EMR over the 30-week 
study period using a binomial glmm.  We fit eight 
additive models for each of the spatial analyses, step-
wise removing insignificant parameters.  We reduced 

both spatial analyses to an additive model of population 
size estimate and field area.  We then fit models with 
these variables as an interactive effect.  We considered 
the global, reduced additive, and reduced interactive 
spatial models as candidate models for selection.

Temporal analysis.—The temporal model used a 
Bernoulli glmm to predict weekly detection probability 
from averaged weather covariates and the sampling 
season.  We defined the season that each detection 
occurred in by evenly dividing the 30-week study period 
into three survey sessions.  We considered the first 10-
week survey session as spring (10 March to 19 May 
2019), the second as summer (20 May to 28 July 2019), 
and the last as fall (29 July to 6 October 2019).  We 
binned temporal covariates and detections by week to 
account for infrequent daily detections.  We set a random 
intercept of field nested within geographic region (i.e., 
13 fields nested within northern [10] and southern [3] 
regions), and a random slope of EMR population size 
estimates grouped by geographic region.  We fit four 
additive models for the temporal analyses, step-wise 
removing parameters.  For the global model and after 
each parameter removed, we fit all combinations of 
interactive effects.  We considered all temporal models 
(n = 14) as candidate models for selection.

Results

Traditional surveys.—For each of the three years, 
we averaged 11.55 ± 5.08 (standard deviation) surveys 
per field (range, 5–27 surveys per field) and a mean = 
17.79 ± 14.54 total person-hours per field (range, 3.75–
67.42 total person-hours per field).  We obtained 0.46 
EMR per person-hour when totaling VES and ACO 
captures from concurrent surveys (Table 1).  Our VES 
detections in each field averaged 2.33 ± 3.86 EMR per 
year (range, 0–16 EMR per year), with a mean of 0.11 
EMR per person-hour.  The ACO surveys in our fields 
were generally more effective than VES, accounting 
for 37.5–100% of weekly detections.  Our ACO survey 
detections in each field averaged 5.27 ± 6.71 EMR per 
year (range, 0–28 EMR per year), with a mean of 0.28 
EMR per person-hour.  Each field typically required a 
mean = 3.23 ± 2.94 ACO surveys to obtain the first EMR 
detections within a year (range, 1–13 ACO surveys).  We 
estimated a mean EMR population size = 36.07 ± 33.23 
individuals per field (range, 3–166 individuals per field).  
One field had only four detections over 3-y of traditional 
surveys (21.33 person-hours of survey effort).  Three 
of these detections occurred in 2015 by VES and one 
occurred in 2017 by ACO survey.

AHDriFT surveys.—We imaged EMR in 12 of 
the 13 fields (92%) and obtained 72 EMR detections, 
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including eight neonates (Fig. 1).  The field that failed 
to image an EMR only had four prior traditional survey 
detections.  Individual arrays obtained a mean = 5.54 
± 4.36 detections (range, 1–20 detections).  Ten arrays 
obtained fewer than 10 detections each, with two of 
those arrays each obtaining a single EMR detection.  
All detections occurred between 1000 and 1900, 
peaking at 1600.  After summing array deployment, 
servicing, and image processing time, we approximated 
150 person-hours of total effort (11.5 person-hours per 
array).  Thus, we estimated an average detection rate of 
0.48 EMR detections per person-hour using AHDriFT 
(Table 1).  

Spatial analysis.—We reduced the spatial global 
models to an interaction between population size 
estimate and field area (Appendix 2), which had a 
negative relationship but a relatively small effect 
(20.9% of posterior distribution in ROPE; Table 
2).  Total detection counts increased with larger 
population size estimates (Fig. 2), especially in 
smaller fields (< 5 ha) relative to medium-sized fields 
(5–15 ha) and large fields (> 15 ha).  The estimates, 
however, had large and overlapping 95% credible 
intervals (CI).  The binomial model predicted EMR 
detections in mean = 5.08 weeks (CI = 2–10 weeks) 
out of a 30-week study period in each field.  This 
equates to a mean of 20% (CI = 5–33%) weekly 
chance of imaging an EMR in a given field based on 
non-temporal variables.

Temporal analysis.—We detected EMR in 57 of 390 
(14.6%) possible field weeks (13 fields sampled for 30 
weeks each; Table 1).  Four field weeks with detections 
occurred in spring, 18 field weeks in summer, and 35 field 
weeks in fall.  We detected EMR in no more than two 
and three different fields per week in spring and summer, 
respectively.  Fall had a mean number of fields per week 

Method
Proportion of surveys 

with detections
Effort per survey 
(person-hours)

Snakes per 
person-hour

Detection 
probability Reference

AHDriFT 14.6% 0.38 0.48 0.00–0.40 This study

VES 20.2% 0.65 0.11 0.18 This study – prior surveys

20.4% 2.13 0.16 0.08 Shaffer et al. 2019

44.2% 2.00 0.22 0.40 Crawford et al. 2020

NA 4.07 0.41 NA Bartman et al. 2016

NA NA 0.41 NA Dreslik et al. 2011

ACO 45.7% 0.65 0.28 0.45 This study – prior surveys

NA NA 0.58 NA Bartman et al. 2016

Table 1.  Comparison of sample detection rates of the Eastern Massasauga Rattlesnake (Sistrurus catenatus) using the Adapted-
Hunt Drift Fence Technique (AHDriFT), visual encounter surveys (VES), and artificial cover object (ACO) surveys.  We 
considered one week of camera trapping by an AHDriFT array as one survey.  Detection rate metrics from the literature are from 
published data and only represent the estimated average or typically conducted survey effort reported.  The abbreviation NA = 
not available.

Figure 2.  Relationship of Eastern Massasauga Rattlesnake 
(Sistrurus catenatus) population size estimate (number of 
individuals) and field size on predicted total detection counts using 
the Adapted-Hunt Drift Fence Technique (AHDriFT) from the 
field-level spatial model.  Total predicted counts are representative 
for the entire sampled active season (10 March to 6 October 2019) 
using one AHDriFT array per wet meadow field in northern Ohio, 
USA.  We defined three general categorizations of field sizes 
as small (< 5 ha), medium (5–15 ha), and large (> 15 ha).  We 
omitted 95% credible intervals (CI) to more clearly display general 
patterns but report them here for field sizes of: small (CI = 0–162); 
medium (CI = 0–88); and large (CI = 0–44). 

with EMR detections = 4.19 ± 1.42 fields (range, 2–8 
fields), and a weekly detection probability per field as 
high as 0.40 (Fig. 3).  Mean detection probability of a 
means-parameterized model that isolated season was 
0.28 (CI = 0.00–0.62) in fall, 0.13 (CI = 0.00–0.29) 
in summer, and 0.15 (CI = 0.00–0.44) in spring.  We 
detected EMR on 65 of 2,730 (2.4%) possible field days 
(13 fields sampled for 210 d each).  

The best-supported temporal model included an 
interaction of season and weekly average temperature 
(Appendix 2).  We only imaged EMR in weeks with 
average temperatures ranging from 10°–26° C (Fig. 3).  
Our data suggest that detection probability in spring 
may be positively correlated with weekly average 
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Parameter Estimate   CI low            CI high       pd    % ROPE

Spatial Binomial 
(number of weeks with a detection)

Population 0.963 -5.13 7.19 0.663 4.8

Field Size 0.088 -2.04 2.05 0.530 13.2

Population × Field Size ˗0.409 -1.48 0.40 0.845 20.9

Spatial Poisson 
(total counts)

Population 0.798 -4.84 7.59 0.647 3.6

Field Size 0.656 -1.37 2.38 0.718 5.4

Population × Field Size -0.633 -1.72 0.10 0.956 4.4

Temporal Bernoulli
(weekly detection probability)

Average Temperature 0.265 -0.99 1.44 0.637 19.7

Spring Season -3.414 -6.76 0.66 0.921 1.5

Summer Season -1.629 -5.20 2.09 0.808 3.9

Fall Season -0.684 -4.10 3.10 0.672 7.6

Temperature × Spring 2.351 -0.22 5.24 0.942 3.4

Temperature × Summer -0.748 -2.11 0.79 0.788 11.2

Temperature × Fall -0.920 -4.71 4.04 0.695 6.3

Table 2.  Parameter estimates of the final Generalized Linear Mixed Effect models to assess Eastern Massasauga Rattlesnake (Sistrurus 
catenatus) detections using the Adapted-Hunt Drift Fence Technique (AHDriFT) in northern Ohio, USA, wet meadows.  Analyses 
include two spatial models (non-temporal field-level covariates) and a temporal model (season and weekly averaged weather covariates).  
Estimates presented with 95% credible intervals (CI), probability of direction (pd) which indicates the probability that a parameter 
estimate has the effect (±) indicated by the mean of the posterior, and percentage of the posterior distribution of the parameter that falls 
within the Region of Practical Equivalence (% ROPE) using 95% of the distribution.

Figure 3.  Influence of weekly average temperature on weekly detection probability per Adapted-Hunt Drift Fence Technique (AHDriFT) 
array of Eastern Massasauga Rattlesnakes (Sistrurus catenatus; EMR) across seasons in northern Ohio, USA, wet meadows.  We defined 
spring as 10 March to 19 May 2019, summer as 20 May to 28 July 2019, and fall as 29 July to 6 October 2019.  Vertical dashed lines 
indicate the temperature range of EMR detections across all seasons combined.  Shaded regions indicate 95% credible intervals around 
mean estimated responses.
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temperature, while in summer it may be negatively 
correlated; however, the credible intervals for these 
interaction parameters did somewhat overlap zero 
(Table 1).  Temperature did not produce a meaningful 
effect in fall.  Overall, weekly average temperature may 
influence weekly detection probability in each field 
by up to 0.10, albeit with notable uncertainty in the 
estimates.

Discussion

The Adapted-Hunt Drift Fence Technique shows 
promising results as a new EMR survey method.  We 
imaged EMR at a similar, and often higher, detection 
rate compared to traditional survey methods while 
requiring fewer person-hours.  Shaffer et al. (2019) only 
surpassed AHDriFT weekly detection probabilities by 
VES when two surveyors actively searched for over 75 
min.  Crawford et al. (2020) had greater VES success, 
but effort influenced detection rates and surveyors 
walked tight transects only 2–3 m apart.  We typically 
observed only two EMR in each field per year using 
VES.  Comparatively, each AHDriFT array averaged six 
EMR detections.

Bartman et al. (2016) had relatively high detection 
rates using ACO surveys (Table 1).  The authors, 
however, deployed ACO in very high densities (14 ACO 
per 0.06 ha) in conjunction with a drift fence.  Such 
deployment protocol is uncommon and standard Ohio 
EMR survey protocol calls for linear transects of only 
1–2 tin sheets/ha (Lipps and Smeenk 2017).  Our average 
yearly ACO (tin) survey detections per field were about 
equal to AHDriFT detections, but ACO surveys obtained 
lower detections per person-hour.  Further, we typically 
needed at least three ACO surveys to first observe an 
EMR each year.  Our AHDriFT detections per field were 
also comparable to previous traditional ACO surveys 
(168 total tin sheets) in two of our fields in 2002 and 
2003 (Douglas Wynn, unpubl. report).  The first year 
of ACO surveys obtained 36 EMR detections and the 
second obtained 31 detections.  In the same two fields, 
we obtained 31 detections using AHDriFT.

We did yield more detections per year than AHDriFT 
when combining VES and ACO detections, with a 
roughly equal detection rate; however, VES and ACO 
survey efficacy is variable and both methods may not 
be applicable at all locations or times.  Visual encounter 
surveys work best when vegetation is low (Olson and 
Warner 2003), making VES most effective in routinely 
managed fields.  Wet meadow vegetation is dense by 
mid-summer, even in well-maintained fields, which 
impairs visual detection and reduces VES efficacy in 
the second half of the active season (Olson and Warner 
2003; Crawford et al. 2020).  Meanwhile, AHDriFT 
was not influenced by our DIVA vegetation scores and 

removed VES observer bias (Dorcas and Willson 2009; 
Albergoni et al. 2016) by placing arrays at the geometric 
center of each site.  Therefore, AHDriFT may be more 
widely applicable than VES for detecting EMR. 

Artificial cover object surveys are also not always 
effective.  For example, about 30 tin sheets checked 
daily through the first half of the active season at 
Carlyle Lake, Illinois, USA, yielded only two EMR 
per year (Michael Dreslik, pers. comm.).  Late summer 
checks detected more gestating females and neonates, 
but overall ACO appears ineffective at this site.  Carlyle 
Lake has a robust EMR population and what causes the 
ACO inefficiency is unclear (Michael Dreslik, pers. 
comm.).  We suspect in our northern Ohio wet meadows 
that ACO may be less effective where there are 
numerous alternative cover objects (e.g., downed trees, 
rocks, dense brush) or where ACO becomes flooded.  
Conversely, AHDriFT only requires EMR to move and 
encounter the drift fences rather than to congregate 
under desired cover objects.  Further, we observed that 
EMR and other species moved through buckets even if 
they contained standing water, suggesting that AHDriFT 
may be less affected by flooding than tin sheets.  It is 
therefore possible that AHDriFT is applicable to a 
wider range of field habitat types than ACO surveys.  
We encourage future research that directly compares 
ACO and AHDriFT efficacy in different EMR habitats.  
Further, ACO surveys are influenced by the time of day, 
temperature, and sky cover during the survey (Joppa 
et al. 2009).  If ACO surveys cannot be conducted 
during optimal conditions, then they may be ineffective.  
Researchers and managers surveying many sites or with 
limited resources can instead deploy continuously active 
AHDriFT arrays.

Overall, we found that AHDriFT can compare to or 
exceed the detection efficacy of traditional EMR survey 
methods.  The major strengths of AHDriFT are that it 
is widely applicable and can obtain detections using 
minimal field effort; however, AHDriFT was ineffective 
for identifying individuals and we recommend 
traditional methods for this purpose.  Combining 
Passive Integrated Transponders (PIT) tags (Gibbons 
and Andrews 2004) with arrays remains a potential 
avenue of research.  PIT tags, however, are usually 
placed towards the tail of snakes, so individuals that 
do not fully enter the buckets may not trigger the PIT 
reader.  In its current design, AHDriFT may be best 
applied for EMR detection-nondetection surveys or 
occupancy modeling in numerous fields or in fields 
where traditional methods are ineffective.  Alternatively, 
AHDriFT can be combined with traditional methods to 
capture heterogeneity in detection and increase overall 
encounter success.  

Additionally, AHDriFT could be used with 
N-mixture models or incorporated into integrated 
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population models to make abundance estimates or 
track population dynamics.  The total number of snakes 
observed at sites, however, was typically quite low.  As 
such, counts will need to be summarized over a period 
of time, requiring some subjective decisions about what 
constitutes a closed survey period.  Researchers may 
consider deploying multiple arrays per field to increase 
detections, but AHDriFT costs may be limiting (Amber 
et al. 2020).  The cost-efficiency of this strategy is 
being assessed as part of on-going research.  We also 
note that AHDriFT captures a wide diversity of small 
mammal species (Martin et al. 2017; Amber et al. 2020), 
including EMR prey such as Meadow Voles (Microtus 
pennsylvanicus; Keenlyne and Beer 1973).  Thus, 
AHDriFT may potentially be used for concurrent EMR 
prey abundance surveys and we encourage research that 
examines this application.

Regardless of the survey objectives, researchers 
that deploy AHDriFT are likely aiming to maximize 
detection rates.  To optimize AHDriFT deployment for 
EMR surveys, we recommend servicing arrays every 3-6 
weeks, rather than every two-weeks as we did.  Second, 
most of our detections occurred in the fall when detection 
probability was highest.  The fall is when EMR breed, 
give birth, and prepare for overwintering (Ernst and 
Ernst 2011; Gibbons 2017).  Heightened EMR activity 
in late July through September (DeGregorio et al. 2018) 
increases their likelihood of encountering the AHDriFT 
drift fences; however, we note that our detection 
probability estimates across seasons have substantial 
uncertainty.  As such, we recommend that researchers 
activate cameras in late summer through the fall when 
EMR are most likely to be imaged, but more research is 
needed to examine the detection success of a shortened 
survey season.

Lastly, we recommend that surveyors refine 
AHDriFT deployment by considering temperature.  We 
imaged EMR only when weekly average temperatures 
were between 10°–26° C.  Temperature has been 
previously shown to affect EMR detection (Shaffer et 
al. 2019; Crawford et al. 2020), likely because ground 
temperature influences EMR movement activity (Moore 
and Gillingham 2006).  Northern EMR populations have 
the most movement activity when daily temperatures are 
30°–34° C and show constrained movement below 20° 
C (Harvey and Weatherhead 2010).  Likewise, AHDriFT 
detections increased in the spring with higher average 
temperatures that are more suitable to EMR movement.  
Meanwhile, high temperatures during summer exceeded 
34° C and potentially reduced EMR movements and 
AHDriFT detections.  Overall, researchers can likely 
focus effort when temperatures are not at their seasonal 
extremes.  For example, our results suggest that when 
spring temperatures are below 10° C, EMR are unlikely 
to be detected by AHDriFT in northern Ohio.  Spring 

emergence of EMR is triggered when temperatures at or 
near the surface become warmer than the underground 
hibernacula (Smith 2009; Hileman 2016).  In our fields 
the required underground-surface temperature inversion 
did not occur until early April.

We identify some important limitations to our study.  
We focused on landscape-level differences between 
fields (e.g., topography, hydrology, EMR population 
size, overall field habitat and area) that may affect 
AHDriFT detections.  Eastern Massasauga Rattlesnake 
spatial ecology and movements, however, may be more 
strongly influenced by microhabitats than macrohabitats 
(Harvey and Weatherhead 2010).  We did not investigate 
how array placement within a field or how EMR 
microhabitat preferences (Moore and Gillingham 2006) 
affected AHDriFT detection.  Further, large seasonal 
EMR movements occur when EMR move from lowland 
winter hibernacula in the spring to drier upland areas 
in the active season (Gibbons 2017; DeGregorio et al. 
2018).  Deploying AHDriFT along these movement 
corridors or in preferred microhabitats may yield 
higher detection rates than arrays in field geometric 
centers.  We are investigating microhabitat and seasonal 
movement influence on AHDriFT detection rates as part 
of on-going research.

Our statistical analyses are also limited due to low 
numbers of EMR detections at most arrays.  Detection 
rates of EMR using AHDriFT is low, particularly in 
fields with very low EMR densities.  Low detections 
per field may have led to ineffective accounting for 
variation in detections, resulting in large credible 
intervals.  We emphasize that our modeling results 
should be considered as preliminary.  Still, we expect 
that the overall effects of temperature and season reflect 
real patterns.  Our results are in-line with the expected 
influence of season and temperature on EMR movement 
(Moore and Gillingham 2006; Harvey and Weatherhead 
2010; Gibbons 2017; DeGregorio et al. 2018), EMR 
detection (Shaffer et al. 2019; Crawford et al. 2020), and 
drift fence efficiency for snakes (Greene 1997; Dorcas 
and Willson 2009). 

Conclusions.—Deploying a single AHDriFT array 
can reduce the field effort of conducting intensive 
traditional EMR surveys and obtain higher detection 
rates. Thus, surveyors that need to minimize field hours, 
have limited resources, or need to survey many locations 
can especially benefit from AHDriFT.  We assert that 
AHDriFT can be of particular use for researchers and 
managers interested in determining presence-absence 
or estimating occupancy.  Surveyors can also deploy 
AHDriFT in conjunction with traditional methods to 
increase EMR detections with minimal additional field 
effort.  For example, low-density fields where a single 
AHDriFT array failed to image EMR can then be 
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specifically targeted using traditional methods.  Another 
option is to conduct VES in the spring while vegetation 
is low (Olson and Warner 2003), and then AHDriFT 
in summer and fall when EMR are more likely to be 
imaged.  Combining AHDriFT and traditional methods 
may be particularly beneficial since use of multiple 
survey methods is suggested to strengthen EMR 
monitoring (Bartman et al. 2016).  We conclude that 
AHDriFT is an effective new tool for widespread, non-
invasive, and time-efficient surveying of the Federally 
threatened EMR.
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Appendices

Appendix 1.  The eight covariates used in our spatial models to determine the spatial variation of detection success of 
the Eastern Massasauga Rattlesnake (Sistrurus catenatus) using the Adapted-Hunt Drift Fence Technique (AHDriFT) 
in northern Ohio, USA, wet meadows.  Columns represent the field identification number, with field 1 in Huron County, 
fields 2 and 3 in Wyandot County, and fields 4–13 in Ashtabula County.  Higher Digital Imagery Vegetation Analysis 
(DIVA) scores represent denser vegetation.  Land cover is classified as either shrub/scrub (SS) or herbaceous cover (HC).

Metric 1 2 3 4 5 6 7 8 9 10 11 12 13

Distance to forest edge 30 442 274 71 113 8 70 38 27 25 28 60 7

DIVA 10.5 16.8 35.5 18.7 29.6 81.5 45.3 32.1 37.6 67.5 80.3 75.8 88.2

Elevation (m) 283 272 271 245 245 244 241 245 245 245 244 246 246

Field edge area (%) 70 40 20 65 75 100 95 100 100 100 80 75 100

Field total area (ha) 8.82 26.8 71.8 3.50 2.89 0.74 5.76 1.34 0.39 1.95 6.52 3.64 0.93

Hydrologic flow rate (m3/s) 0.01 0.02 0.01 0.02 0.01 0 0.01 0 0.03 0.01 0.01 0.02 0.01

Land cover HC HC HC SS HC SS SS HC HC SS SS HC SS

Slope (°) 0.46 0.36 0.45 0.03 0.22 0.07 1.12 0.23 0.02 0.50 0.33 0.26 0.10

Appendix 2.  Generalized Linear Mixed Effect models built under a Bayesian framework to assess Eastern Massasauga 
Rattlesnake (Sistrurus catenatus) detections using the Adapted-Hunt Drift Fence Technique (AHDriFT) in northern Ohio, 
USA, wet meadows.  We present global models [A] and reduced final models [B] of the two spatial models (non-temporal 
field-level covariates) and the temporal model (season and weekly averaged weather covariates).  We used Watanabe-
Akaike Information Criterion (WAIC) model weight, Leave-One-Out (LOO) model weight, and Bayes Factors (BF) as 
model selection criteria.  Bayes Factors with large values (>100) represent extremely strong evidence for support of the 
reduced final model relative to the global model (BF = 1).

Model WAIC LOO BF
Spatial Binomial (number of weeks with a detection out of 30 possible weeks)

[A] (weeks | 30) ~ population + hydrologic flow rate + land cover + field area + 

edge area + vegetation height and density + distance to forest + elevation2 + slope + 

(population | region)

1.1 0.1 1

[B] (weeks | 30) ~ population * field area + (population | region) 98.9 99.9 1.04^6

Spatial Poisson (total observation counts)

[A] counts ~ population + hydrologic flow rate + land cover + field area + edge area 

+ vegetation height and density + distance to forest + elevation2 + slope + (population 

| region)

2.4 0.1 1

[B] counts ~ population * field area + (population | region) 97.6 99.9 1.51^7

Temporal Bernoulli (weekly detection probability)

[A] detection ~ average temperature + precipitation + relative humidity + season + 

(population | region / field)
3.3 3.3 1

[B] detection ~ average temperature * season + (population | region / field) 96.7 96.7 1.2^3


