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Abstract.—The Mojave Desert Tortoise (Gopherus agassizii) is listed as threatened under the U.S. Endangered 
Species Act because of subsidized predation by other species, loss and degradation of its habitat owing to human 
activities, and disease.  Potential exposure of toxic substances on G. agassizii that possibly impede recovery, however, 
have not been thoroughly investigated.  To quantify concentrations of several heavy metals and examine possible 
adverse effects of heavy metal toxicity on G. agassizii, we analyzed blood samples using the Dried Blood Spot (DBS) 
method and soil samples from their locations in the Ivanpah Valley, California, USA.  In most cases, heavy metal 
concentrations in blood never or rarely exceeded minimum detection levels (typically, 0%–7% of samples in a 
given season).  In soils, several heavy metals (e.g., arsenic, lead, and thorium) exceed average crust composition, 
but none exceeded soil health guidelines.  Furthermore, lead, selenium, iron, and arsenic concentrations were lower 
than, or within, published ranges for turtles, reptiles, and other vertebrates.  We found a positive relationship 
between survival and selenium and iron concentrations but no relationship between metal concentrations and 
health indicators such as body condition and disease prevalence.  Our results suggest that G. agassizii in our study 
area were not exposed to toxic levels or suffered adverse effects of heavy metals.  The DBS method is minimally 
invasive and effective for the collection of blood samples from G. agassizii.  Further analyses should explore how 
well samples collected by the DBS method reflect metal concentrations in other tissues.
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Introduction

The Mojave Desert Tortoise (Gopherus agassizii) is 
listed as threatened under the U.S. Endangered Species 
Act.  The primary threats identified include habitat loss 
and degradation due to anthropomorphic activities such 
as urbanization, military training, mining, and energy 
production (Lathrop 1983; Prose 1985; Lovich and 
Bainbridge 1999; Scott et al. 2020).  These activities are 
thought to play a role in the increased spread and incidence 
of disease, subsidized and opportunistic predation, and 
increased mortality rates (Jacobson et al. 1991; Hunter 
et al. 2003; Berry et al. 2006; Cypher et al. 2018).  The 
diversity of threats and an incomplete understanding 
of their contribution to population declines hampers 
recovery efforts (Averill-Murray et al. 2012).  To 
mitigate the potentially harmful effects of some of these 
activities, particularly military training and renewable 

energy development, the current conservation strategy 
for G. agassizii is primarily translocation of individuals 
(Field et al. 2007; Esque et al. 2010; Lovich and Ennen 
2011; Nussear et al. 2012; Lovich and Ennen 2017).  
Many studies following translocation efforts are now 
focusing on the effect translocation has on biological 
parameters and overall mortality rates of individuals 
(Drake et al. 2012; Farnsworth et al. 2015; Hinderle et 
al. 2015; Brand et al. 2016; Cypher et al. 2018).

The effects of several environmental (e.g., drought, 
temperature, and disease) and anthropogenic (e.g., 
subsidized predation and collisions with vehicles) 
factors on tortoise survival following translocation are 
well documented (Esque et al. 2010; Nussear et al. 
2012; Lovich et al. 2014; Dickson et al. 2019).  The 
adverse effects of exposure to toxic substances (e.g., 
heavy metals) on tortoises, however, have not been 
investigated in depth (Martínez-López et al. 2010).  
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To date, heavy metal toxicology studies on chelonians 
focus mostly on sea turtles (Pople et al. 1998; Saeki et 
al. 2000; Sakai et al. 2000; Kenyon et al. 2001; Roe et 
al. 2011).  Because concentration levels of metals are 
necessary for successful embryonic development, the 
earliest studies focused on heavy metal monitoring in sea 
turtle eggs (Stoneburner et al. 1980; Sakai et al. 1995).  
The freshwater turtle and other reptile literature includes 
many studies that examine cause and effect relationships 
from point and non-point source pollution (Clark et 
al. 1998; Burger 2002; Henny et al. 2003; Bishop et 
al. 2010; Di Geronimo et al. 2018).  The presence of 
chemical contaminants in sea turtles such as polycyclic 
aromatic hydrocarbons, polychlorinated biphenyls, and 
organochlorine pesticides are also receiving increased 
attention (Alam and Brim 2000; Innis et al. 2008; Harris 
et al. 2011).  A much smaller body of literature exists 
that has evaluated toxicological biomarkers of exposure 
to heavy metals and chemical contaminants in terrapins 
or tortoises (Burger 2002; Allender et al. 2015).

Studies that focus on G. agassizii have found higher 
concentrations of environmental contaminants in 
diseased tortoises than in healthy ones (Jacobson et al. 
1991; Kristin Berry et al., unpubl. report), suggesting 
that these potentially toxic substances negatively affect 
tortoise health and survival (Chaffee and Berry 2006).  
Tissue samples collected from a mining-affected area 
(Kelly-Rand Mining District, Kern County, California, 
USA) and sites on or adjacent to military bases (Fort 
Irwin National Training Center and Edwards Air Force 
Base, USA) contain more bioaccumulated arsenic in 
scutes, and more exogenous particles in scute and lung 
tissue, compared with samples collected from areas 
of minimal land disturbance (Andrea Foster et al., 
unpubl. report).  Several health-related factors with 
plausible links to contamination affect the morbidity 
and mortality of free-ranging G. agassizii.  Cutaneous 
dyskeratosis (CD, or shell disease) is characterized by 
shell lesions (Jacobson et al. 1994, 2014; Homer et al. 
1998; Christopher et al. 2003), and the major causes 
are nutritional deficiencies and environmental toxicosis 
affecting keratinized tissues (Berry 1997; Bruce Homer 
et al., unpubl. report).  Elevated concentrations of 
various heavy metal toxicants, especially arsenic, are 
found in tissues of G. agassizii showing clinical signs 
of CD (Jacobson et al. 1994; Seltzer and Berry 2005; 
Bruce Homer et al., unpubl. report).  Tortoises with and 
without CD have comparable copper, cadmium, and lead 
residue concentrations in the liver, but diseased tortoises 
have much higher concentrations of iron and mercury 
(Jacobson et al. 1991).  Arsenic is understood to be a 
major cause of the high incidence of CD (Kristin Berry 
et al., unpubl. report).  Other heavy metals associated 
with mining activities and vehicular traffic on nearby 
roads (e.g., gold, cadmium, mercury, lead, antimony, 

and tungsten) are locally abundant and occur in higher 
concentrations than arsenic in soils and/or plants in the 
region, especially in plants considered preferred dietary 
items for tortoises (Chaffee and Berry 2006).  Desert 
Tortoises with CD show elevated concentrations of 
toxicants (e.g., barium, calcium, cadmium, chromium, 
magnesium, molybdenum, nickel, phthalates, and 
selenium) in the liver, kidneys, and plasma and/or 
nutritional deficiencies, such as low copper, zinc, 
selenium, and plasma vitamin A (Homer et al. 1998; 
Bruce Homer et al., unpubl. reports).

Another health-related factor that affects tortoise 
populations is Upper Respiratory Tract Disease 
(URTD), which is caused by two identified species of 
Mycoplasma bacteria and is one of the most extensively 
characterized infectious diseases of chelonians 
(Jacobson et al. 1991; Brown et al. 1994, 1995).  The 
increasing prevalence of URTD, CD, and other signs of 
disease in G. agassizii and the potential role of adverse 
toxicological effects of metal contamination in their 
etiology require further investigation (Jacobson et al. 
1991, 1994, 2014; Sandmeier et al. 2009).  Information 
about emerging infectious diseases and environmental 
contaminants can be used to assess and manage the 
overall health of G. agassizii and their ecosystem (Bruce 
Homer, pers. comm.).

To establish baselines for high-quality habitats 
across the range of G. agassizii, it is essential to 
understand landscape-scale patterns and concentrations 
of potentially toxic substances, in addition to acute 
toxicity levels.  Chaffee and Berry (2006) performed the 
only evaluation to date by comprehensively sampling 
soil and vegetation, but not tortoises, at multiple 
sites in the Mojave Desert.  In addition, reference 
intervals for hematological (e.g., packed cell volume, 
hemoglobin concentration, and white blood cell count) 
and biochemical (e.g., glucose, triglycerides, and 
various enzymes) parameters have been developed 
for G. agassizii (Christopher et al. 1999), although no 
values exist for concentrations of heavy metals such as 
lead, arsenic, and copper.  Published reference intervals 
provide guidelines for interpreting analyses on tissue 
samples from tortoises performed under a variety of 
environmental and physiological conditions.

As part of efforts to mitigate the development and 
operation of the Ivanpah Solar Electric Generating 
System (ISEGS), an approximately 400-megawatt-
capacity facility in the Ivanpah Valley, California, USA, 
G. agassizii were translocated from within the ISEGS 
boundaries to adjacent areas, where they were monitored 
for 5 y (2012–2017) to determine the effects of short-
term, short-distance translocation on survival and 
other demographic parameters (Farnsworth et al. 2015; 
Dickson et al. 2019).  In accordance with the monitoring 
requirements outlined in the 2011 Biological Opinion 
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(U.S. Fish and Wildlife Service [USFWS] 2011a) on 
the effects of translocating G. agassizii from the ISEGS, 
researchers developed a comprehensive Effectiveness 
Monitoring Program (EMP) to characterize conditions 
that influence the survival of translocated tortoises 
(Dickson, B.G., B.P. Wallace, R.D. Scherer, M.E. 
Gray, and A. Kissel. 2017. Process- and scale-based 
determinants of survival for translocated Mojave Desert 
Tortoises in the Ivanpah Valley, California. https://www.
cspinc.org/public/CSP_ISEGS_Tortoise_Report_5yr_
FINAL.pdf.), including the potential adverse effects 
of exposure to toxic heavy metals (Cohn, B.R., and 
K. Herbinson. 2017. Environmental toxicant and 
contaminant monitoring. https://www.cspinc.org/public/
CSP_ISEGS_Tortoise_Report_5yr_FINAL.pdf.; Brian 
Cohn et al., unpubl. report).  The EMP also examined 
local and landscape-scale environmental variables, 
characteristics of individual tortoises (e.g., body size, 
sex, and biannual health exams), and other factors, in 
addition to translocation status.

The Ivanpah Valley has been considered 
excellent habitat for G. agassizii, with some of the 
highest population densities being found in the 
East Mojave Desert (Turner et al. 1984); however, 
several anthropogenic activities could be sources of 
contamination, such as legacy elements from mining 
operations (e.g., arsenic and uranium; Chaffee and Berry 
2006) and lead from automobile exhaust from traffic on 
Interstate 15 (I-15), which passes through the Ivanpah 
Valley.  From 1988 to 1993, Colosseum, Inc. conducted 
mining and cyanide leaching of gold and silver ore in the 
Clark Mountain Range west of the ISEGS, within the old 
Clark Mountain Mining District, which, over the past 
120 y, has produced silver, gold, copper, lead, tungsten, 
and fluorite (Environmental Protection Agency 1992).  
In addition, the Mountain Pass rare earth mine on the 
southern flank of the Clark Mountain Range, adjacent to 
the ISEGS, was one of the largest producers of rare earth 
elements in the world and was mined on a large scale 
between 1965 and 1995 (Haxel et al. 2002; Castor and 
Hendrick 2006; Castor 2008).  In 1998, after a series of 
wastewater spills, chemical processing at this mine was 
discontinued.  This wastewater was piped to evaporation 
ponds near the dry bed of Ivanpah Lake and contained 
a significant concentration of thorium and its decay 
products (Clark et al. 1998; Henny et al. 2003; Ault et 
al. 2015).  Subsequently, the Desert Tortoise Research 
Facility was constructed as part of a settlement to satisfy 
parkland mitigation obligations for effects of the mine 
on G. agassizii.  The mine has changed hands from 
corporation to corporation and has opened and closed 
several times since 2002.  Increased anthropogenic 
pressure on G. agassizii in the Ivanpah Valley is the 
result of the construction of three active renewable 
energy facilities, including the ISEGS.  The footprints 

of these facilities degrade and fragment habitat, and 
interrupt linkages between G. agassizii conservation 
areas in California and Nevada states (Bureau of Land 
Management 2002; Lovich and Bainbridge 1999; 
USFWS 2011a,b; Dutcher et al. 2020).

In this study, to examine the possible adverse 
effects of heavy metal toxicity on G. agassizii, we 
collected and analyzed tortoise blood samples and 
quantified concentrations of several heavy metals 
within a broader, biannual health assessment program.  
We also comprehensively analyzed soil samples from 
G. agassizii habitats throughout the study area to 
accompany concurrent tissue samples.  Our data inform 
establishment of baseline landscape-level patterns in 
heavy metal concentrations detected in tissues of G. 
agassizii and their habitat.

Materials and Methods

Study area.—The Ivanpah Valley mostly contains 
Bureau of Land Management-administered land and is 
about 75 km southwest of Las Vegas, Nevada, USA (Fig. 
1).  In addition to a concentrated solar thermal power 
plant, the ISEGS facility includes fences surrounding 
the project footprint that prohibit the passage of 
G. agassizii.  The area is also intersected by I-15 and 
includes two other solar power plants, elevated power 
transmission lines and towers, paved roads accessing 
the ISEGS, numerous unpaved roads, and a golf course.  
Elevation across the Ivanpah Valley ranges from 790 to 
1,830 m, with vegetation consisting of Mojave Desert 
Scrub dominated by Creosote Bush (Larrea tridentata) 
and White Bursage (Ambrosia dumosa).  The annual 
rainfall is low (about 20 cm), with most precipitation 
occurring during winter and the summer monsoon (peak 
in July and August; Global Historical Climatology 
Network station USC00267369, Searchlight, Nevada, 
USA).  Soil types vary from silt/clay to sand/loam, with 
G. agassizii typically occupying the relatively low-
lying alluvial fans, plains, and colluvial/bedrock slopes.  
Additional details on the Ivanpah Valley are specified in 
Turner et al. (1984) and Sieg et al. (2015).

Tortoise monitoring.—We captured, quarantined, 
and translocated 73 G. agassizii at the ISEGS.  We 
captured the tortoises close to the project boundary and 
released them < 500 m from the centroid of their original 
home range.  To determine the approximate location of 
their original home range, we radio-tracked them once 
per week for up to 2 y prior to moving them.  We equipped 
all 73 tortoises with radio transmitters, recaptured them 
on a biannual basis for health assessment, and regularly 
monitored them to detect movements and mortality 
events (translocation group).  We followed the same 
procedure for two other groups of tortoises that were 
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not subject to translocation: a control group of 149 
individuals with home ranges in a comparable habitat 
within the Ivanpah Valley (< 20 km of the ISEGS site; 
control areas are shown in Fig. 1), and a resident group 
of 112 individuals with home ranges within the release 
area of translocated tortoises.  Evaluation of the control 
and resident groups allowed us to isolate the effects, if 
any, of translocation from other potentially confounding 
variables, e.g., precipitation, soil, and vegetation 
characteristics.  See Dickson et al. (2019) for a detailed 
description of the study design and execution.

Health assessment and pathogen transmission.—
Consistent with USFWS protocols (Berry and Christopher 
2001; USFWS 2016) to quantify general patterns in the 
health status of the tortoises, we conducted biannual 
(May and September) health assessments beginning in 
spring 2012.  We conducted visual health assessments 
that included but were not limited to documenting 
clinical signs of URTD (i.e., discharge from nares 
and/or eyes, swelling and/or redness of eyes, lethargy, 
and poor body condition), CD (i.e., lesions typical of 
CD, peeling laminae or scutes, lesions on the bone or 
scutes, mold, and fungus), and trauma (i.e., missing or 
other trauma to the limbs and shell).  To evaluate body 
condition scores and test whether the tortoise condition 
varied among the three groups and over time, we used 
protocols developed by the USFWS (2016).  We also 
collected and tested blood samples via enzyme-linked 
immunosorbent assay (ELISA) at the University of 

Florida to detect exposure to the bacteria Mycoplasma 
agassizii and M. testudineum.  Between April 2012 and 
June 2017, we collected 3,673 samples from within the 
three groups for the purpose of ELISA testing.

Blood sampling and metal concentration analysis.—
We collected blood samples from tortoises for the 
purpose of heavy metal analysis during each biannual 
health assessment.  The study area collectively contained 
highly developed or disturbed areas (proximate to the 
I-15), as well as less affected areas (e.g., upper bajada of 
the recipient site and eastern portions of the control site).  
By measuring metal concentrations in the treatment 
groups and their habitats seasonally, we quantified 
natural and anthropogenic toxicant concentrations to 
be used in further analyses to determine whether they 
affected health and disease.  

Between fall 2013 and spring 2015, we collected 191 
samples from a subset of G. agassizii in the translocation 
study (41 translocated tortoises, 63 residents, and 86 
controls; Table 1).  We sampled tortoise blood using 
a novel Dried Blood Spot (DBS) method, which 
was validated by Lehner et al. (2013).  We collected 
50  µL of whole blood from the subcarapacial vein 
(Hernandez-Divers et al. 2002), and placed blood 
samples on Whatman 903® Filter Card filter paper 
(Whatman; GE Healthcare, Buckinghamshire, UK) 
to measure concentrations of heavy metals (e.g., iron, 
arsenic, cadmium, lead, mercury, nickel, lead, selenium, 
thallium, titanium, and uranium).  We followed the 

Figure 1.  Ivanpah Solar Electric Generating System (ISEGS) project footprint within the Ivanpah Valley study area in southern 
California, USA, described in the Effectiveness Monitoring Plan. (Taken from ISEGS, Ivanpah Solar Electric Generating System; EMP, 
Effectiveness Monitoring Plan).
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methods described by Lehner et al. (2013), which 
involved overnight digestion of each blood sample 
and measurement of heavy metal concentrations using 
inductively coupled plasma mass spectrometry (ICP-
MS) at the Michigan State University Diagnostic 
Center for Population and Animal Health, Lansing, 
USA.  The limits of quantification below which we 
could not reliably detect concentrations was 10 parts per 
billion (ppb) for arsenic, cadmium, selenium, uranium, 
titanium, and thallium, 20 ppb for mercury and lead, and 
500 ppb for nickel.

Soil sampling.—We collected soil samples close to 
the locations where we captured G. agassizii for health 
assessments.  Soil toxicology monitoring followed the 
protocols described by Chaffee and Berry (2006).  We 
used soil cores to collect soil samples from within the 
home range of the translocated, resident, and control 
groups at a depth of about 2–8 cm, a distance shown to 
contain most of the roots of annual and perennial plant 
species and Aeolian transported contaminants (Chaffee 
and Berry 2006).  We prepared all homogenized soil 
samples for laboratory analyses at the Applied Science, 
Engineering, and Technology Laboratory (ASET) at the 
University of Alaska, Anchorage, Alaska, USA, using 
ICP-MS, and quantified 29 elements.

Data analyses.—We used heavy metal concentration 
data generated from blood samples collected in spring 
2014 and 2015 to model annual survival probability from 

May 2014 to May 2015 and from May 2015 to May 2016 
for G. agassizii individuals with a midline-carapace 
length (MCL) of ≥ 160 mm.  The concentrations of most 
heavy metals were below detection limits; however, iron 
and selenium concentrations were above the detection 
limit in all tortoises, whereas the lead concentration was 
above the detection limit in > 96% of individuals in 2014 
and > 91% of individuals in 2015.  For survival analysis, 
we assigned a value of 0 to all tortoises in whom the lead 
concentration was below the detection limit.

To evaluate the influence of individual covariates and 
heavy metal concentrations on estimates of annual and 
cumulative survival probabilities (probability of survival 
for the duration of the study) for all three groups, we 
used tracking data and a known-fate model (White and 
Garrott 1990).  We used the data collected during annual 
spring health assessments as the focal sampling period; 
therefore, estimates of survival probability were from 
May of one year to May of the following year (i.e., May 
2014 to May 2015 and May 2015 to May 2016).  Next, 
we developed a set of candidate models representing 
competing hypotheses regarding the causes of variation 
in survival probability and used an information-theoretic 
approach (Burnham and Anderson 2002) to evaluate 
the relative levels of support for competing models.  
We calculated Akaike’s Information Criterion adjusted 
for a small sample size (AICC), and prior to modeling 
we centered and standardized values for all covariates 
(Schielzeth 2010).  Subsequently, we diagnosed 
correlations between covariates using Pearson’s 

Study Group Sex (No.) MCL (mm) Fe (ppm) Se (ppb) Pb (ppb) As (ppb) Cd (ppb)

Control F (33) 219 ± 16 266 ± 98 (33) 106 ± 43 (33) 53 ± 47 (33) 29 ± 22 (14) 19 ± 11 (4)

Male (47) 247 ± 25 312 ± 91 (47) 140 ± 53 (47) 54 ± 43 (43) 22 ± 2 (2) 13 ± 3 (3)

Unk. (6) 138 ±19 236 ± 79 (6) 99 ± 47 (6) 50 ± 26 (5) 40 ± 14 (2) 10 (1)

All (86) 289 ± 96 (86) 124 ± 51 (86) 53 ± 44 (81) 27 ± 18 (28) 16 ± 8 (8)

Resident F (30) 230 ± 15 246 ± 79 (0) 105 ± 31 (30) 33 ± 22 (29) 13 ± 4 (2) ND

M (33) 258 ± 23 321 ± 96 (33) 149 ± 52 (33) 41 ± 36 (29) 16± 8 (2) ND

Unk. (1) 174 294 (1) 149 (1) 51 (1) 13 (1) ND

All (64) 286 ± 95 (64) 128 ± 48 (64) 38 ± 30 (59) 14 ± 5 (5) ND

Translocated F (20) 222 ± 17 258 ± 76 (20) 111 ± 31 (20) 32 ± 40 (18) 15 ± 4 (5) 13 ± 4 (2)

M (20) 252 ± 22 313 ± 65 (20) 158 ± 56 (20) 38 ± 35 (20) 17 ± 8 (5) 15 (1)

Unk. (1) 168 247 (1) 95 (1) 51 (1) 15 (1) ND

All (41) 285 ± 75 (41) 134 ± 50 (41) 36 ± 37 (39) 16 ± 6 (11) 15 ± 3 (3)

ALL F (83) 224 ± 16 257 ± 86 (83) 107 ± 36 (83) 41 ± 39 (80) 24 ± 19 (21) 17 ± 9 (6)

M (100) 251 ± 24 315 ± 88 (100) 147 ± 53 (100) 46 ± 40 (92) 20 ± 11 (19) 14 ± 2 (4)

Unk. (8) 146 ± 22 245 ± 70 (8) 105 ± 43 (8) 51 ± 21 (7) 27 ± 17 (4) 10 (1)

All (191) 235 ± 31 287 ± 91 (191) 128 ± 50 (191) 44 ± 39 (179) 23 ± 16 (44) 15 ± 7 (11)

Table 1.  Heavy metal concentrations (Fe = iron, Se = Selenium, Pb = Lead, As = Arsenic, Cd = Cadmium) in blood samples of 
Mojave Desert Tortoises (Gopherus agassizii).  Data are shown as mean ± standard deviation (sample size for individual heavy metals).  
Abbreviations are F = female, M = male, Unk. = unknown, ND = no data, MCL = midline-carapace length, ppm = parts per million, and 
ppb = parts per billion. 
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Correlation Matrix, but we excluded those that had a 
Pearson’s Correlation Coefficient > |0.70| in the same 
model.  When interpreting a set of candidate model 
results, we considered the model with the lowest AICC 
to have the most support, although other models (e.g., 
those within 8 AICC units of the highest-ranked model; 
Anderson 2008) might also be supported.  In addition, 
we examined 95% confidence intervals (CIs) around 
estimates of regression coefficients, and if the 95% CIs 
around estimates of regression coefficients included 0, 
we concluded that the effect was negligible.  Finally, 
we used model-averaged estimates of coefficients to 
explore the relationship between individual covariates 
and survival (Burnham and Anderson 2002).

Data for the development of covariates were 
unavailable for all G.agassizii individuals for all years.  
For instance, we analyzed blood samples for heavy 
metal concentrations in a subset of all radio-telemetered 
tortoises.  In these cases, we censored animals for the 
intervals where data were missing.  The overall dataset 
used in survival analysis included 106 individuals in 
the control group, 78 in the resident group, and 54 in 
the translocated group; heavy metal concentration data 
were available from 86 control, 63 resident, and 41 
translocated animals (Table 1).

Candidate models included the effects of group 
(control, resident, and translocated), body size (MCL), 
the concentration of each of the three heavy metals 
for which we had sufficient data (selenium, iron, and 
lead), and two-way interactions between group and 
heavy metal concentrations and between group and 
size.  As described by Dickson et al. (2019), preliminary 
analysis indicated no apparent relationship between 
survival probabilities and sex; we did not include the 
effects of sex in the final set of candidate models.  To 
contextualize the results of the survival analysis, we 
also examined possible relationships between heavy 
metal concentrations and health parameters (e.g., body 
condition documented during health assessments) and 
the characteristics of home ranges (e.g., proximity to the 
I-15 or to non-operational mine sites and the estimated 
area of roads and fences within home ranges).  To 
evaluate the effects of five heavy metals (iron, selenium, 
arsenic, lead, and cadmium) on the body condition score 
of tortoises, we used a Generalized Linear Model with 
a binomial link at α = 0.05 (Zuur et al. 2009) using the 
statistical program R (R core development team 2018).  
The proportion of body condition scores < 4 (average 
body condition score) from the health assessment data 
was our response variable, whereas sex, study group, 
and the maximum heavy metal concentration were 
covariates (running a separate model for each heavy 
metal).  For cadmium, we did not include sex and group 
as covariates because of the small sample size (n = 11).  
We also investigated potential relationships between 

heavy metals and other health parameters, such as signs 
of URTD or CD, and ELISA-positive samples, despite 
the extremely infrequent occurrence of negative health 
indicators (< 5% of all observations; Dickson, B.G., B.P. 
Wallace, R.D. Scherer, M.E. Gray, and A. Kissel. 2017. 
Op. cit.).  To further examine the relationship between 
anthropogenic features and heavy metal concentrations, 
we quantified home range sizes, distance to the I-15, 
distance to non-operational mine sites, and total distance 
of roads and fences within each tortoise home range and 
compared these factors with heavy metal concentrations 
in blood and soil samples (See Farnsworth et al. 2015 
and Dickson et al. 2019 for detailed descriptions on 
home range determination).  We calculated these values 
on the basis of an interannual average home range for 
each tortoise.

Results

We found no between-group differences in heavy 
metal concentrations (Tukey HSD post-hoc analyses; all 
P > 0.05 for metals shown in Table 1).  Concentrations 
of several heavy metals in blood samples (e.g., mercury, 
titanium, thorium, and uranium) never or rarely exceeded 
minimum levels of detection (i.e., typically 0–7% of 
samples in a given season for cadmium and arsenic).  
Blood concentrations of lead (Fig. 2; Supplemental 
Information Fig. S1), selenium (Fig. 2; Supplemental 
Information Fig. S2), iron (Fig. 2; Supplemental 
Information Fig. S3), and arsenic (Fig. 2; Supplemental 
Information Fig. S4) were typically lower than or within 
published ranges for turtles (including tortoises; Nagle 
et al. 2001; Burger 2002; Martínez-López et al. 2010; 
Yu et al. 2011).  Other vertebrate (including reptiles) 
concentrations were also generally higher (Eisler 1988; 
Burger et al. 2007; Hamilton 2004; Buekers et al. 2009; 
Grillitsch and Schiesari 2010).

We detected lead, iron, and arsenic in soil samples; 
however, only approximately one-third (67/205) of 
soil samples had detectable levels of selenium.  Soil 
concentrations of lead (Supplemental Information Fig. 
S2), selenium (Supplemental Information Fig. S3), 
and iron (Supplemental Information Fig. S4) were 
not significantly related to blood concentrations of 
the same elements; however, soil and tortoise blood 
concentrations of arsenic were positively related 
(r2  =  0.30, F1,43 = 17.60,  P  <  0.001) in the same 
locations (Supplemental Information Fig. S4).  Soil 
concentrations of lead and arsenic were similar to or 
lower than those reported in other locations in the 
Mojave Desert (Chaffee and Berry 2006).

The highest-ranked candidate model included the 
effects of selenium, and the second-highest candidate 
model included the effects of iron; we found no 
effects of body size or group (Table 2).  The estimated 
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regression coefficient for selenium from the top-ranked 
model was 0.99 (95% CI = 0.04–1.94), indicating that 
tortoises with high selenium concentrations in their 
blood have higher annual survival (Fig. 3).  Although 
we estimated a positive effect of iron on survival (Fig. 
3), the CI around the estimated regression coefficient 

from the second-ranked model included 0 (0.58, 95% 
CI = ˗0.02–1.86).  We found no evidence of survival 
probability being affected by lead concentrations 
(Fig. 3).

Body condition scores were not significantly related 
to any of the five heavy metals we analyzed (iron, 
selenium, arsenic, lead, and cadmium; Table 2).  We 
also found no relationship between high heavy metal 
concentration and other negative health indicators, 
likely because such indicators were extremely rare 
overall.  Even when focusing only on tortoises with 
the highest heavy metal concentrations, we found no 
discernible pattern between increased heavy metal 
concentrations and negative health indicators (e.g., body 
condition, URTD, and CD; data not shown).  Although 
overall, heavy metal concentrations in blood and soil 
samples were relatively low, higher concentrations of 
lead (Fig. 2; Supplemental Information Figs. S1 and 
S5) and arsenic (Fig. 2; Supplemental Information 
Figs. S4 and S8) were more frequent in the control area 
southeast of the I-15 (more proximate to the spill sites 
from the rare earth element mine 1997 pipeline breach); 
however, we found no significant relationships between 
distance of home ranges from the I-15 and heavy metal 
concentrations in blood (Supplemental Information Fig. 
S9).  Similarly, we found no relationship between heavy 
metal concentration and other anthropogenic features 
of home ranges (e.g., selenium vs. proximity to known 
toxic spill sites, F1,181 = 0.74, P = 0.390; abandoned mine 
sites. F1,181 = 0.850, P = 0.360; and areas of roads within 
home ranges, F1,181 = 0.450, P = 0.500). 

Figure 2.  Frequency distributions of (A) lead, Pb, (B) selenium, Se, (C) iron, Fe, and (D) arsenic, As, concentrations in blood samples 
collected from Desert Tortoises (Gopherus agassizii) in the Ivanpah Valley study area of California, USA. 

Model -2LL k AICC ∆AICC wi

Selenium 110.3 2 114.3 0.0 0.34
Iron 111.3 2 115.3 1.0 0.20
group*iron 104.4 6 116.7 2.4 0.10
no predictor 
variables 115.2 1 117.2 2.9 0.08

group + selenium 109.2 4 117.4 3.1 0.07
Size 113.8 2 117.9 3.6 0.06
group + iron 110.3 4 118.4 4.1 0.04
Lead 114.6 2 118.6 4.3 0.04
group*selenium 107.5 6 119.8 5.5 0.02
Group 114.2 3 120.3 6.0 0.02
group + size 113.2 4 121.4 7.0 0.01
group + lead 113.5 4 121.6 7.3 0.01
group*lead 110.6 6 122.9 8.6 0.00
group*size 112.7 6 124.9 10.6 0.00

Table 2.  Candidate model selection results for evaluation of 
the effects of iron, selenium, and lead concentrations and size 
(MCL) using the large-tortoise data set.  A similar analysis was 
not conducted on the small-tortoise (120–160 mm MCL) data set 
because of insufficient sample size. Acronyms are –2LL = –2 times 
the log of the likelihood function at its maximum, k = number of 
parameters in the model, AICC = Akaike’s information criterion 
adjusted for the small sample size, ∆AICC = difference between 
AICC of a given model and AICC of the highest-ranked model, = wi, 
Akaike weight, and MCL = midline-carapace length.
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Discussion

After being absorbed from the environment and 
having entered the bloodstream, heavy metals are 
rapidly distributed throughout the body, most often 

bound to plasma proteins and blood cells (Kenyon et 
al. 2001; Grillitsch and Schiesari 2010; Perrault et al. 
2011.  Once bound, they might be subject to reversible 
elimination, transferred to different tissues where they 
might be sequestered, and if not remobilized, stored 
in a form unavailable to the body. The paucity of data 
available on exposure of G.  agassizii to heavy metals 
or contaminants was our starting point, however, heavy 
metal concentrations in blood are ephemeral and, when 
present, reflect recent exposure or remobilization from 
storage in the liver for reproduction.  We acknowledge 
that our measurements might differ from what would 
have been detected with more invasive procedures such 
as liver tissue sampling (Grillitsch and Schiesari 2010).  
Therefore, using blood as the tissue of analysis in this 
study was a tradeoff between sampling efficiency and 
reduced tortoise handling and the ambiguous temporal 
characteristic of heavy metal concentrations in blood 
relative to that in other tissues, such as liver, muscle, 
bone, and scutes (Grillitsch and Schiesari 2010).  In 
the case of an acute or chronic condition, however, 
increased heavy metal concentrations in blood would 
be expected.  Considering the increased, ongoing 
development and resultant habitat fragmentation in 
the Ivanpah Valley, there is a potential for long-term 
consequences of toxic exposures in G. agassizii.  With 
respect only to exposure to toxic concentrations of 
heavy metals, we suggest that the values we reported 
here be used as reference values.  Samples collected 
from tortoises in other anthropogenically altered or 
fragmented habitats could potentially be compared in 
the future.  Given the ongoing, range-wide decline in 
the G. agassizii populations, it is critical to identify and 
protect high-quality habitat areas, including those with 
low levels of toxic substances, to meet recovery goals 
for this federally listed threatened species (Berry et al. 
2014).

Our survival analysis results suggested a positive 
relationship of survival with selenium and iron.  
Selenium is a necessary detoxifying nutrient but is toxic 
at high doses (Naganuma et al. 1983).  Perrault et al. 
(2011) reported concentrations of selenium in blood 
of Leatherback Sea Turtles (Dermochelys coriacea) 
that might physiologically harm hatchlings; however, 
selenium toxicity in aquatic ecosystems typically 
occurs at levels > 5,000 ppb (Hamilton 2004), more 
than an order of magnitude above the concentrations 
we detected in blood samples.  The positive relationship 
between survival and selenium concentrations in blood 
supports the notion that selenium concentration does 
not approach toxic levels.  Conversely, low levels of 
selenium might somehow be related to an increased 
probability of mortality.  Selenium deficiency is 
recognized as a potentially serious health issue for 
both humans and livestock because it can lead to 

Figure 3.  Relationships between estimated annual survival rates of 
Mojave Desert Tortoises (Gopherus agassizii) and concentrations 
of (A) selenium, Se, (B) iron, Fe, and (C) lead, Pb.  The solid line 
is the estimated trend line between heavy metal concentrations 
and survival rates, and the dashed lines are the 95% confidence 
intervals.
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cardiac myopathy (Lenz and Lens 2009).  If livestock 
forage contains selenium levels of < 50–100 μg kg−1 
(an optimal level), animals can develop white muscle 
disease (mineralization of the heart muscle ultimately 
causing chronic heart failure; Walsh and Burch 1963; 
Beytut et al. 2002).  White muscle disease has also 
been observed in reptiles suffering from deficiency of 
dietary vitamin E and selenium (Boyer and Scott 2019).  
It remains unclear whether tortoises with relatively low 
selenium concentrations experience pathological effects 
of selenium deficiency.  A possible link between low 
selenium concentration and survival needs to be further 
investigated.  Future studies could quantify selenium 
availability in forage plants of tortoises, selenium 
concentrations in various tortoise tissues, and possible 
relationships between selenium concentrations and 
tortoise health and other factors such as growth rate.

Jacobson et al. (1991) reported that the iron 
concentration in livers of tortoises diagnosed with URTD 
is significantly higher than in livers of healthy tortoises.  
The iron concentration in the healthy tortoises was 
similar to those in our study.  Jacobson et al. (1991) also 
reported no between-group differences in selenium or 
lead concentrations, which we also found.  Regardless, 
evidence of a positive relationship between survival 
and blood iron concentration was weak.  Furthermore, 
this apparent statistical relationship is unlikely to be 
biologically significant.

Thus far, investigation of the role of contaminants 
in the health of G. agassizii has been impeded by a lack 
of clinical data, limited access to appropriate samples, 
and the absence of a proven method of assessing 
the contaminant status of live animals that might or 
might not exhibit disease symptoms.  Nondestructive 
sampling techniques, particularly blood analyses, might 
be more easily applied in the evaluation of contaminant 
exposure in the field to prevent excessive destructive 
sampling, especially in the case of threatened reptile 
species.  Nondestructive sampling via blood (using 
the DBS method, for example), toenail clips, or biopsy 
is an important aspect of bioindicator development 
(Hopkins et al. 2001; Burger et al. 2007).  Although the 
concentrations of heavy metals are most often higher 
in the somatic tissues of chelonians and most, if not 
all, wildlife species, the development of a sustainable, 
noninvasive methodology through blood sampling 
provides an alternative for monitoring a threatened 
species.  Opportunistic sampling over time could provide 
a baseline relationship between the concentration of 
contaminants in somatic tissues such as organs, muscle, 
and bone as well as in blood.

In this context, the DBS method is an effective, 
rapid, minimally invasive procedure for collecting, 
transporting, and storing whole blood samples.  In 
this instance we used DBS to study heavy metals 

although the methodology can be applied to a variety 
of toxicological or epidemiological health concerns 
or questions (Stove et al. 2012).  Our inference about 
the potential adverse effects of exposure to toxic heavy 
metals, however, is constrained by the ephemeral nature 
of heavy metal concentrations in blood; that is, blood 
samples can reflect either recent exposure via multiple 
potential pathways or remobilization from storage in the 
liver for reproduction (Grillitsch and Schiesari 2010).  
Therefore, to establish a relationship between heavy 
metal concentrations in blood and other tissues, we 
recommend that future studies that use the DBS method 
simultaneously sample multiple tissues (Burger et al. 
2007).

We established a baseline for the relative presence 
of heavy metals in a population of G.  agassizii blood 
and soil samples in the Ivanpah Valley and correlated 
these values to relevant health parameters and mortality 
estimates used to ascertain the multiyear effects of 
translocation on G.  agassizii at the ISEGS.  There is 
an increasing need for biomonitoring, particularly with 
continued human land-use patterns that encroach on and 
alter habitats for natural resources (Hunter et al. 2003).  
Despite the apparent relationships between survival 
and selenium and iron concentrations, the survival 
rates across the study area and over more than 5 y of 
monitoring were among the highest published values 
for turtles, including desert tortoises (Iverson 1991; 
Shine and Iverson 1995; Agha et al. 2015; Dickson 
et al. 2019).  For these reasons, our data suggest that 
G. agassizii in our Ivanpah Valley study area were not 
exposed to toxic levels of metals, based on our method 
of blood sampling and analysis.  There remains a need 
to further examine how specific toxicants or groups of 
toxicants affect health, immune system, susceptibility 
to diseases, and mortality of tortoises.  To develop 
reference intervals for heavy metal and toxicological 
data from wild free-ranging tortoises, samples must be 
obtained and analyzed across various habitats, seasons, 
and climate patterns such as drought or an increase in 
temperature.  This information can support translocation 
and management strategies by evaluating factors 
that take into account health tolerances (e.g., acute or 
chronic toxicity of arsenic) and potential health benefits 
(e.g., selenium nutrition) within a given habitat.
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