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Abstract.—Constructed wetlands (CWs) are an attractive solution for wastewater treatment due to their potential 
capacity to treat wastewater and support native species.  These dual purpose CWs, however, can attract wildlife 
and expose them to aquatic environments high in nutrients and harmful contaminants.  Although studies indicate 
tradeoffs between larval anuran growth and long-term adult survival following development in wastewater, it is 
unclear what specific mechanism is responsible for these effects.  We suggest that behavior could be a mediating 
process that both responds to the environment and contributes to demography.  We evaluated the behavioral 
responses of Southern Leopard Frog (Lithobates sphenocephalus) tadpoles exposed and reared in pond water 
versus wastewater treatment CWs to identify if behavior was affected by exposure or development in wastewater 
and to explore two potential causes of behavioral change: increased turbidity and a common contaminant, 
diphenhydramine.  Specifically, we monitored activity, exploration, and predator avoidance.  Tadpoles in wastewater 
were slower to begin moving, traveled shorter distances, and exhibited the shortest burst distances.  We did not 
observe differences between tadpole origin that indicated exposure to wastewater was sufficient to alter behavior 
independent of developmental processes.  Neither of our potential mechanisms for these effects were sufficient 
to explain the magnitude of behavioral change in treated wastewater.  As wastewater can host unique chemical 
and physical conditions, including contaminant mixtures, learning more about how behavior responds to specific 
conditions of wastewater may help identify mechanisms to explain why frogs exhibit changes in behavior, growth, 
and survival following development in wastewater.
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introduction

Wetland habitat loss represents a significant 
challenge to the maintenance of freshwater biodiversity 
(Gibbs 1993; Cardinale et al. 2012; Hu et al. 2017).  
Freshwater habitats, particularly in the southeastern 
U.S., are recognized as ecosystems experiencing 
significant declines in the prevalence and distribution 
of freshwater species (Brooks et al. 2002; Dudgeon et 
al. 2006; Strayer and Dudgeon 2010).  Land conversion 
and pollution by human waste disposal has eliminated 
or degraded 33–50%, or approximately 30 million km2 
of wetland habitat (Russi et al. 2013; Hu et al. 2017).  
Constructed wetlands (CWs) are an effective mitigation 
strategy to combat habitat loss through the replication 
of topography, substrate, plant community, and flow 
regimes of natural wetlands (Kadlec and Knight 2004).  
Confirming the Field of Dreams hypothesis (if you build 
habitat, animals will come; Palmer et al. 1997), CWs 
can improve the regional diversity and abundance of 
avian, fish, and anuran communities reliant on wetland 
habitat (Soulliere and Monfils 1996; Snell-Rood and 
Cristol 2003; Balcombe et al. 2005; Fleming-Singer 
and Horne 2006; Lacki et al. 1992).  Additionally, 
resource managers propose CWs as a low cost, minimal 

maintenance solution for polishing treated effluent to 
address deficiencies in traditional municipal wastewater 
treatment, namely the removal of pharmaceuticals and 
personal care products (PPCPs; Kivaisi 2002; Verhoeven 
et al. 2006).  As a tertiary wastewater treatment system, 
CWs provide improvements to wastewater management 
by reducing concentrations of nitrogen and phosphorus 
in discharge, transforming and sequestering PPCPs, and 
reducing the chemical and biological oxygen demand in 
receiving waters (Rousseau et al. 2004; Fleming-Singer 
and Horne 2006; Scholz et al. 2007; Kadlec and Wallace 
2008; Hsu et al. 2011). 

Unfortunately, the implementation of CWs for 
wastewater treatment may degrade their ability to offer 
high quality wildlife habitat (Helfield and Diamond 1997; 
Pankratz et al. 2007), as excess nutrients and bioactive 
PPCPs sequestered in natural environments can interact 
with the physiological systems of native organisms 
(Koplin et al. 2002; Ebele et al. 2017; Richmond 
et al. 2017).  Such contaminants, when absorbed or 
transformed by the wetlands, can remobilize into 
wetland food webs (Hammer and Bastian 1989; Devito 
and Dillon 2011) resulting in different community 
structure (Strand and Weisner 2011), altered competitive 
interactions (Kross and Richter 2016), and contaminant 
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bioaccumulation (Barber et al. 2006) relative to natural 
wetlands.  Many anurans are particularly vulnerable to 
the negative impacts of PPCP exposure due to obligate 
aquatic life stages and semi-permeable skin (Werner 
1986; Alford and Harris 1988; Chelgren et al. 2006).  
Furthermore, adult amphibians in CWs will consume 
similarly exposed invertebrates, increasing the potential 
for biomagnification of contaminants and transport into 
terrestrial food webs (Valdés et al. 2014; Lanctôt et al. 
2016; Burket et al. 2018).  The possible population-
level consequences of exposure to treated wastewater 
include changes in demography including smaller clutch 
sizes, higher larval survival, lower juvenile survival and 
growth, shifts in adult sex ratios (Laposata and Dunson 
2000; Ruiz et al. 2010; Smith and Burgett 2012; Zeitler 
et al. 2021), as well as developmental abnormalities, 
such as malformed/extra limbs, open limb slits, missing 
eyes, edema, scoliosis, and calcinosis (Keel et al. 2010; 
Ruiz et al. 2010).  These patterns suggest that CWs 
might not serve simultaneous functions in treating 
wastewater and providing high-quality wildlife habitat 
(Zeitler et al. 2021).

Animal behavior is a key link between internal 
physiological processes and the environment, with 
implications for individual and population-level fitness 
(Wong and Candolin 2015; Martin et al. 2017).  Recent 
studies (Zeitler et al. 2019; Zeitler et al. 2021) on 
the morphological development of anurans in treated 
effluent from CWs found that, by most metrics of larval 
anural success, these tadpoles performed better than 
those raised in local pond water.  Post-metamorphic 
morphological evaluations, however, revealed longer 
limbs but narrower heads in these individuals, which 
has been shown in other studies to be associated with 
reduced foraging success (Emerson 1985; Emerson 
and Bramble 1993; Tejedo et al. 2010).  Therefore, 
this success at metamorphosis did not translate to 
the terrestrial environment at the juvenile stage 
(Zeitler et al. 2021).  Research also shows that PPCPs 
can negatively affect the behavior of an organism, 
inhibiting antipredator responses (Martin et al. 2017), 
reducing foraging, and impairing locomotive ability 
(Barry 2014).  For example, diphenhydramine occurs 
in large concentrations within wastewater treatment 
CWs and has behavior-altering physiological effects 
on aquatic organisms, including depressed muscle 
ability, augmented muscle twitches, analgesic effects, 
and reduced neuromuscular transmission, all of 
which can alter individual movement and responses 
to stimuli (Takiuchi 1964; Abdel-Aziz and Bakry 
1973; Katyama and Tasaka 1985; Stevens 2012).  
Determining if and how treated wastewater may 
modify behaviors may identify a potential mechanism 
for altered developmental processes in wastewater, and 
provide insight into possible ecological side effects of 

development in treated wastewater, such as limited 
expression of anti-predator behaviors.

Wastewater differs from pond water in multiple 
ways that could contribute to altered tadpole behaviors.  
First, high concentrations of nitrogen and phosphorus 
stimulate algal blooms that increase turbidity and create 
high availability of food resources (Lewitus et al. 2008).  
Algal overgrowth may reduce foraging activity and 
refuge seeking behaviors (Zamor and Grossman 2007; 
Ostrand 2016).  Although larval anurans often use 
chemical cues for predator detection, increased turbidity 
may inhibit detection of visual predator cues (Shingles et 
al. 2005; Ferrari et al. 2010; Zabierek and Gabor 2016).  
Secondly, treated wastewater includes PPCPs known 
to interfere with physiological movement and response 
processes by impairing the neural processing of cues, 
inhibiting the signaling pathways between the brain 
and musculature, and affecting muscle contractions or 
inducing hyperactivity (Kiesecker 2002; Palenske et al. 
2010; Egea-Serrano et al. 2012; Johnson et al. 2019; 
Sievers et al. 2019).  Furthermore, increased size at 
metamorphosis for larval anurans developing in treated 
wastewater is likely an interactive effect of increased 
resource availability and reduced activity or energy 
expenditures (Scheffers and Pszkowski 2015; Drayer 
and Richter 2016).  Reduced activity in wastewater 
treatment CWs could also reduce the probability of 
encountering a predator, improving survival rates (Ham 
et al. 1995; Bridges 1999; Junges et al 2012). 

The overall objective of our study was to evaluate 
the extent of tadpole exploratory behavior and predator 
response in wastewater.  Because development in 
wastewater confers long-term effects (Zeitler et al. 
2021), we also sought to determine if any behavioral 
shifts were due to development in wastewater or simply 
due to exposure.  Specifically, we addressed the three 
following questions: (1) how does wastewater affect 
tadpole exploration, movement, and antipredator 
behaviors, (2) are affected behaviors associated with 
development in treated wastewater, and (3) why does 
wastewater affect behavior?  We tested for two potential 
mechanisms behind altered behavior in wastewater 
including high turbidity and environmentally relevant 
concentrations of diphenhydramine.  We selected 
diphenhydramine as one possible PPCP that could 
affect anuran behavior because it was one of 16 
tested compounds that persisted after 5 mo in ex-
situ mesocosms used in a previous study of anuran 
development (Zeitler et al. 2021).  Diphenhydramine can 
act as an anuran analgesic, affects ecosystem processes, 
and regularly occurs in discharged effluent (Bartelt-Hunt 
et al. 2009; Stevens 2012; Burket et al. 2020; Robson et 
al. 2020).  We expected that wastewater would reduce 
exploratory behaviors and inhibit antipredator behavior, 
and that this effect would be similar to effects observed 
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in water with high turbidity and/or environmentally 
relevant concentrations of diphenhydramine.  Secondly, 
we hypothesized that development of tadpoles in 
wastewater would be necessary to induce a behavioral 
difference and predicted that short term exposure to 
wastewater would not elicit behavioral changes. 

MatErials and MEthods

Study system.—The municipal water cycle of 
Sewanee, Tennessee, USA, begins in a rain-fed pond 
before treatment and dissemination to the town.  Returned 
wastewater undergoes traditional primary and secondary 
treatment.  An experimental treatment operation pumps 
treated effluent from the secondary treatment lagoon 
into a three-cell wetland complex with native vegetation 
(described in Zeitler et al. 2018; Fig. 1).  We collected 
wastewater at the outflow of the wastewater treatment 
CWs and pond water from an easily accessible rain-
fed pond on the campus of the University of the South, 
Sewanee, Tennessee.  We selected Southern Leopard 
Frog (Lithobates sphenocephalus) tadpoles for our 
experiments because they rapidly colonized and bred 
within the wastewater treatment CWs, and we used 
them in prior studies of this system (Zeitler et al. 2018; 
Zeitler et al. 2021; Fig. 1).  We collected tadpoles for the 
two experiments described below from the same rain-
filled pond where we collected water and from the end 
of the wastewater treatment cycle in the CWs.  The CWs 
have no natural watershed and depend entirely on inputs 
of treated wastewater.  The rain-fed pond has forested 
upland habitat surrounding the pond (> 50 m from 
the shoreline), but its complete watershed is not fully 
protected.  The rain-filled pond has limited residential 

development within the watershed, and a hiking trail is 
mowed around its perimeter.  Although contaminants 
have not been tested at this location, a nearby pond with 
similar surrounding land-use had low concentrations of 
pesticides known to impact amphibians (e.g., atrazine; 
Zeitler et al. 2021).  At each site, we captured fish 
alongside tadpoles, but the dominant fish observed in 
the rain-filled pond was Bluegill (Lepomis macrochirus) 
whereas Western Mosquitofish (Gambusia affinis) 
dominated the wastewater treatment facility. 

Developmental origin and behaviors.—We designed 
a repeated-measures experiment using tadpoles captured 
from a rain-fed pond and from the wastewater treatment 
CWs.  We collected 30 tadpoles between stages 26 
and 30 (Gosner 1960) in July 2018 from the locations 
described above.  We used a repeated measures approach 
and completed behavioral observations within 14 d of 
capture.  One individual did not complete all treatments 
in the experiment leaving 29 and 30 trials per treatment.  
We tested tadpoles in a random order in pond water and 
wastewater and in the presence or absence of a caged 
predator for a total of four randomly ordered trials per 
individual.  We chose L. macrochirus as the predator 
species because it is a common species in the small 
rain-fed ponds and regularly used to evaluate anuran 
antipredator behavior (e.g., Bridges and Gutzke 1997; 
Eklöv and Werner 2000; Smith et al. 2007).  

Test enclosures were 37.85 L aquaria marked with 
a 1 × 1 cm grid on the bottom.  We filled them with 
9.5 L of water from the treatment source.  We placed 
tadpoles into the tanks and monitored them for 30 min 
from a distance of 1 m.  All aquaria had 10 × 10 × 10 cm 
cages at one end of the enclosure that housed a single L. 
macrochirus.  We only used L. macrochirus with a total 
length < 5 cm for our study.  The cage was constructed 
with 1 × 1 mm window screen to allow for transmission 
of visual and chemical cues.  We introduced tadpoles to 
the aquarium on the opposite side from the cage.  We 
replaced treatment water daily, and we washed aquaria 
with a bleach solution between treatments.  We housed 
tadpoles in 37.85 L aquaria with 19 L of water collected 
from their capture location.  We placed a bubbler in the 
aquaria, and we refreshed water halfway through our 
trials.  We fed tadpoles Rabbit Chow (main ingredients: 
alfalfa, wheat, soybean, corn; 18% protein, 1.6% fat, 
14.5–19% fiber) ad libitum when not being used in 
behavioral trials.  Trials began approximately 24 h 
after capture to eliminate any post-capture behavioral 
differences (Hoffacker et al. 2018).

Response variables included latency to move, number 
of movements, and exploration.  We defined latency 
as the time to emerge from an enclosure.  We allowed 
tadpoles to acclimate to the enclosure for 5 min in a 35 
cm2 enclosure.  At the end of the acclimation period, we 

figurE 1.  Treated effluent moves through three consecutive 
cells of a constructed wetland (CW) complex planted with native 
vegetation and colonized by native wildlife such as the Southern 
Leopard Frog (Lithobates sphenocephalus; inset) observed in 
this study at Sewanee, Tennessee, USA.  The shallow second cell 
of the wastewater treatment CW is pictured here.  (Photographed 
by Saunders Drukker).
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opened a 4 × 4 cm gap to allow the tadpoles to leave the 
enclosure, which was when we began our observations.  
If tadpoles had not emerged after 10 min, we removed 
the enclosure from the test aquarium and excluded these 
individuals from analyses of latency.  We quantified 
exploration as the total number of 1 × 1 cm boxes entered 
by the tadpole head.  We also quantified the number 
of movements as the number of times that movement 
occurred.  We counted a new movement after the tadpole 
was still (i.e., not entering or exiting any new grid 
boxes).  Because some individuals had long movement 
latencies, we time-corrected the exploration and number 
of movement metrics to maintain independence among 
our response metrics.  We used this approach because 
10–13% of the variance in exploration and the number 
of movements were predicted by latency.  If individuals 
had high latencies, we observed them for less time in 
the open container.  Therefore, we divided exploration 
and number of movements by the time remaining after 
they emerged from cover to minimize the implicit 
relationship among the response variables. 

To evaluate whether tadpoles exhibited behavioral 
differences after exposure to wastewater or after 
development in wastewater, we performed a Linear 
Mixed Model for each of our three behavioral response 
variables: latency to emerge, exploration, and number 
of movements.  First, we evaluated correlations 
among independent variables, which resulted in us 
removing the number of movements response variable 
from our analysis.  The number of movements was 
correlated with the exploration (r2 = 0.75, P < 0.001) 
and latency to move (r2 = 0.02, P = 0.019), which were 
unassociated with one another (r2 < 0.001, P = 0.804).  
Predictor variables included the waterbody from which 
we captured tadpoles, the water source in which they 
were tested, the presence or absence of a predator, and 
interactions among these predictors.  To account for 
repeated testing of individuals, we included individual 
identifiers as a random effect in each model.  We 
performed all analyses in R, and Linear Mixed Models 
were performed with the lme4 package (Bates et al. 
2015; R Development Core Team 2019).  We assessed 
significance of tests with a = 0.05.

Mechanisms of altered behaviors.—We evaluated 
the behavioral responses of tadpoles captured from 
a rain-fed pond exposed to pond water, treated 
wastewater, pond water with clay added to increase 
turbidity, and pond water with added diphenhydramine.  
Using the same testing enclosure described above, we 
quantified latency, exploration, and burst distance for 
each individual.  We time-corrected exploration for the 
time remaining after the tadpoles left the acclimation 
enclosure observing them for 20 min.  At the end of 
the observation period, we measured burst distance 
by pinching the tail of the tadpole with forceps and 

quantifying the distance it traveled before resting again.  
We created turbidity and diphenhydramine 

treatments using pond water we collected from the rain-
filled pond where we collected tadpoles.  To this water, 
we added clay or diphenhydramine to create the water 
for each treatment.  We collected clay locally and added 
it to pond water until it reached 10 NTU, which was the 
mean turbidity of water collected from the wastewater 
treatment CWs.  We dissolved diphenhydramine powder 
in pond water to create a solution of 85 ngL-1 representing 
the mean concentration of diphenhydramine found 
among the three cells of the local wastewater treatment 
CWs (Wright 2019).  We added 9.5 L of pond water, 
pond water + clay, pond water + diphenhydramine, 
and wastewater collected from the discharge of the 
wastewater treatment CWs to aquaria for behavioral 
testing.

We collected 125 tadpoles from a rain-filled pond 
and housed them in an ex situ 350 L mesocosm filled 
with rainwater, a 1 L introduction of pond water, and 1 
kg of dried oak-hickory leaf litter.  At least 24 h prior 
to testing, we captured tadpoles from the mesocosm 
and housed them in an aquarium in the lab under the 
conditions described above.  After observing their 
behavior in a single treatment, we released them at 
their capture location.  We observed 30 tadpoles per 
treatment that were Gosner stages 26–30 (Gosner 1960).  
We completed all observations within 7 d in November 
2019.

To evaluate our hypotheses regarding behavioral 
differences in tadpoles between wastewater and natural 
ponds, we used ANOVAs to assess how latency to 
emerge, exploration, and burst distance varied among 
treatments with pond water, wastewater, pond water 
with higher turbidity, and pond water with added 
diphenhydramine.  Exploration and burst distance 
were correlated (r2 = 0.05, P = 0.007), but neither was 
associated with latency (r2 = 0.003, P = 0.565; r2 = 
0.009, P = 0.174, respectively).  In this instance, we 
decided to evaluate both outcomes because exploration 
was directly comparable with the first experiment, and 
burst distance also provides information about startle 
reflexes not previously measured.  Although these three 
response variables were non-normally distributed (W  
> 0.72), one-way ANOVAs are robust to violations of 
the assumption of normality (Schmider et al. 2010).  We 
used a Bartlett’s test to assess homoscedacity and found 
that all three response variables met this assumption for 
ANOVA (K2 = 3.64–4.61, P = 0.204–0.303).  For these 
analyses, we evaluated post hoc, pairwise comparisons 
using Tukey’s Honest Significant Difference tests.

rEsults

Only one individual did not emerge from the refuge; 
we excluded it from the analysis of latency.  Predator 
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presence did not influence latency to emerge (Table 
1) nor did tadpole source location (Table 1; Fig. 2).  
Latency to emerge was greater when we tested tadpoles 
in wastewater relative to pond water regardless of their 
capture location (Table 1; Fig. 2).  No interactions among 
predictors were significant (Table 1).  We observed 
a similar pattern for exploration, as tadpoles moved 
more when in pond water relative to treated wastewater.  
The presence of a predator and tadpole origin did not 
influence exploration (Table 1; Fig. 2).  No interactions 
among predictors were significant (Table 1).

Equivalent numbers of individuals across all 
treatments did not emerge from refuge during the 
latency trials, and thus, we removed 25 individuals 
from the analysis of latency.  Latency to emerge was 
unassociated with treatment (F3,92 = 1.55, P = 0.207; 
Fig. 3), but exploration was associated with treatment 
(F3,117 = 3.31, P = 0.023; Fig. 3).  Overall, exploration 
was less in wastewater relative to any other treatment 
(Fig. 3).  Post hoc comparisons revealed that the only 
significant difference was between pond water with clay 
and wastewater treatments (Table 2), but there may be a 

marginal difference between wastewater and pond water 
with diphenhydramine treatments as well (Table 2; Fig. 
3).  Burst distance was also different among treatments 
(F3,117 = 5.36, P = 0.002; Fig. 3).  Similar to exploration, 
burst distance was lowest among individuals tested in 
wastewater.  Low burst distance in wastewater was 
significantly different only relative to pond water with 
clay and pond water treatments (Table 2; Fig. 3).

discussion

Our data suggest wastewater directly affected 
the exploratory and movement behaviors of L. 
sphenocephalus tadpoles but did not change anti-predator 
behaviors.  Tadpoles tested in wastewater were slower 
to begin moving, traveled less area, and exhibited the 
shortest burst distances.  These findings are consistent 
with other research that shows decreased activity and 
lethargy in tadpoles after exposure to compounds in 
wastewater (Fraker and Smith 2004; Smith and Burgett 
2005).  Tadpoles from the wastewater treatment CWs 
were L. macrochirus naïve.  Lack of prior experience 

figurE 2.  Quartiles of latency to emerge from shelter (a) 
and exploration (b) by tadpoles of the Southern Leopard Frog 
(Lithobates sphenocephalus) collected from a local pond and 
wastewater treatment facility at Sewanee, Tennessee, USA, when 
placed in local pond water or wastewater.  Overall, tadpoles 
were slower to move and moved less distance when tested in 
wastewater regardless of where they were captured.  Letters 
indicate significant differences from post-hoc tests (Tukey’s 
Honest Significant Differences).

Response Variable/Factor F-value df P-value

Latency

   Predator 2.01 1,87 0.158

   Origin 0.27 1,87 0.601

   Water 15.85 1,87 < 0.001

   Predator × Origin 0.02 1,87 0.887

   Predator × Water 2.73 1,87 0.101

   Origin × Water 0.03 1,87 0.870

   Predator × Origin × Water 0.49 1,87 0.485

Exploration

   Predator 1.19 1,88 0.278

   Origin 0.85 1,88 0.358

   Water 25.21 1,88 < 0.001

   Predator × Origin 0.40 1,88 0.530

   Predator × Water 0.10 1,88 0.750

   Origin × Water 0.04 1,88 0.852

   Predator × Origin × Water 0.14 1,88 0.712

tablE 1. Linear Mixed Models evaluating effects of predator 
(presence or absence), tadpole origin (pond water or wastewater 
treatment constructed wetland), and water source (pond water 
or wastewater treatment constructed wetland) on the latency 
to emerge from refuge and exploration of a novel enclosure 
by tadpoles of the Southern Leopard Frog (Lithobates 
sphenocephalus).  Models included a random effect of 
individual, and we excluded the number of movements from 
analyses because it was correlated with exploration (r2 = 0.75, 
P < 0.001) and latency to move (r2 = 0.02, P = 0.019).  The 
abbreviation df = degrees of freedom.
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may have inhibited the common antipredator behaviors 
that tadpoles typically exhibit in the presence of L. 
macrochirus (e.g., Bridges and Gutzke 1997; Eklöv and 
Werner 2000; Smith et al. 2007); however, both sets of 
tadpoles failed to alter their behavior in the presence 
of this fish.  The small L. macrochirus may not have 
been large enough before tadpoles to consider them a 
significant threat or the lack of water movement in the 
tank may have prevented accurate detection of predator 
risk on the far side of the aquaria (Eklöv and Werner 
2000).  Contrary to our prediction, short term occupancy 
in wastewater was enough to shift tadpole movement 
behaviors, suggesting that reduced movements are not a 
result of changes in developmental processes but rather 
immediate responses to conditions in the wastewater.   
Finally, our results show that neither turbidity nor 
diphenhydramine fully account for the behavioral 
differences we observed in L. sphenocephalus tadpoles 
exposed to wastewater.

Lethargy and reduced exploration are common 
responses of anurans to contaminant exposure and 
can lead to changes in related behaviors including 
swimming speed and escape responses (Jung and Jagoe 
1995; Lavorato et al. 2013; Sievers et al. 2018; Sievers 
et al. 2019).  Contaminants can directly and indirectly 
result in shifting behaviors.  With short term exposure to 

some contaminants, shifts in oxygen transport, immune 
response, enzymatic activity, and even DNA damage 
can affect individuals at the most basic level (Kiesecker 
2002; Egea-Serrano et al. 2012).  Shifts in cardiac and 
metabolic function can induce fatigue that can manifest 
itself in limited movement and burst distances observed in 
this study (Palenske et al. 2010; Cheng and Farrell 2007; 
Costa et al. 2007; Johnson et al. 2019).  Alternatively, 
some contaminants can indirectly compromise the 
sensitivity of an individual to external stimuli (Tierney 
et al. 2010; Moore et al. 2015; Sievers et al. 2018).  For 
example, shifts in oxygen and conductivity associated 
with high concentrations of nitrogenous compounds can 
result in behavioral changes that prioritize responses 
to these conditions over others (Camarago and Alonso 
2006).  Notably, these behavioral effects could result 
from short-term exposure rather than chronic exposure 
during development in wastewater.

Chronic fatigue of tadpoles could also result in 
behavioral shifts that affect population processes 
through reduction in growth and survival (Laposata 

Treatment
Pond 
water

Pond 
water + 

clay
Pond 

water + DI
Waste-
water

Latency

    Pond water — 0.411 0.324 0.991

    Pond water + clay — 0.999 0.559

    Pond water + DI — 0.473

    Wastewater —

Exploration

    Pond water — 0.31 0.613 0.654

    Pond water + clay — 0.957 0.025

    Pond water + DI — 0.09

    Wastewater —

Burst distance

    Pond water — 0.957 0.273 0.002

    Pond water + clay — 0.568 0.011

    Pond water + DI — 0.253

    Wastewater —

tablE 2.  Significance (P-values) of pairwise post-hoc tests 
using Tukey’s Honest Significant Difference evaluating 
water treatments (pond water, turbidity, diphenhydramine, 
and wastewater) on tadpoles of the Southern Leopard Frog 
(Lithobates sphenocephalus) in terms of latency to emerge from 
refuge, exploration, and burst distance.  The abbreviation DI = 
diphenhydramine.

figurE 3.  Quartiles of latency to (a) emerge, (b) exploration, 
and (c) burst distances of tadpoles of the Southern Leopard Frog 
(Lithobates sphenocephalus) when tested in four different water 
treatments.  For response variables with a significant effect of 
treatment, letters indicate statistically significant differences 
from post-hoc tests (Tukey’s Honest Significant Differences).
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and Dunson 2000; Fraker and Smith 2004; Sievers 
et al. 2019; Zeitler et al. 2021).  Although we did not 
observe differences in behavior of tadpoles relative to 
a predator, lethargy that manifests as reduced startle 
distance decreases the capacity to escape predators, 
thereby increasing predation risk (Azevedo-Ramos 
et al. 1992; Verrell 2000; Sievers et al. 2018; Sievers 
et al. 2019).  Another experiment, however, observed 
lower survival of tadpoles in the absence of predators 
suggesting that other mechanisms may be necessary to 
explain lower survival of tadpoles in wastewater (Zeitler 
et al. 2021).  Lethargy could alter energy dynamics by 
minimizing both energy needs and foraging activity 
(Horat and Semlitsch 1994; Dayton and Fitzgerald 2001; 
Krishnamurthy and Smith 2011).  Furthermore, sublethal 
stress induced by contaminants can contribute to higher 
parasite loads (Koprivnikar et al. 2007; Kiesecker 2002), 
reduced immunocompetency (Gendron et al. 2003) and 
developmental and hormonal abnormalities of tadpoles, 
some of which can also inhibit movement like scoliosis, 
edema, and axial defects (McDaniel et al. 2004; Ruiz et 
al. 2010; Slaby et al. 2019; Wesner et al. 2020).  Most 
of these effects, however, would require longer term 
exposure of tadpoles than they experienced in our study.  

Lethargy is consistent with the effects of 
diphenhydramine on amphibian behavior.  As a 
histamine antagonist, diphenhydramine minimizes 
inflammatory responses and induces drowsiness; 
however, diphenhydramine alone did not replicate 
behavioral changes in wastewater.  Another compound, 
alone or in combination with diphenhydramine, may be 
necessary to induce the behavioral changes we observed 
(Crain et al. 2008; Hale et al. 2017; Sievers et al. 2019).  
For example, medications to treat high blood pressure 
like valsartan and propranolol also found in wastewater 
are known to induce lethargy and fatigue by slowing 
heart rates in the Great Basin Spadefoot (Scaphiopus 
intermontanus; Hillman et al. 1982).  Likewise, feeding 
behaviors and reproductive success can change in 
response to these and other compounds (Shao et al. 
2006; Oskarsson et al. 2014; Ding et al. 2015; Capolupo 
et al. 2018; Matus et al. 2018).  Although identifying 
single compounds resulting in behavioral change would 
be helpful, most PPCPs occur in mixtures of chemicals, 
meaning that any shifts in behavior in wastewater could 
be difficult to attribute to any one compound (Crain et 
al. 2008; Cizmas et al. 2015; Hale et al. 2017; Sievers 
et al. 2019). 

Increasing the turbidity common to wastewater 
was not associated with shifts in tadpole behavior in 
wastewater, and in fact, turbidity increases activity in 
prey species like tadpoles (Van de Muetter et al. 2005; 
Chivers et al. 2013).  Like most studies investigating 
turbidity, we used silt and clay to simulate turbidity 

whereas turbidity in wastewater is typically a result of 
overgrowth of algae and cyanobacteria (Smith 1990; 
Bilotta and Brazier 2008; Martins et al. 2011).  Clay 
and cyanobacteria can also produce interactions that 
could overwhelm their role in impacting turbidity.  For 
example, clay as a negatively charged compound can 
bind to positively charged ions and can destabilize 
nanoparticles potentially influencing how tadpoles sense 
their environment (Zhou et al. 2012; Pal and Marschner 
2016).  Alternately, cyanobacteria regularly produce 
neurotoxins that impede larval anuran swimming 
frequency and speed and increase their vulnerability 
to parasites (Oberemm et al. 1999; Mastin et al. 2002; 
Webb and Crain 2006; Kotut et al. 2010; Buss et al. 
2019). Cyanobacteria and algae are also food resources 
for tadpoles that could change their response to turbidity 
relative to an inorganic substance.  Finally, it is possible 
that conditions of the pond water used in our study but 
otherwise typically absent in wastewater (e.g., chemical 
cues from large predatory fish), could minimize the 
effects of turbidity (Petranka et al. 1987; Mirza et al. 
2006; Ferrari et al. 2008). 

Exploratory behaviors in our study were clearly 
different in wastewater although we were unable to 
identify a causal mechanism.  We also determined that 
these behavioral changes were the result of exposure to, 
rather than development in, wastewater.  We recommend 
more studies to better understand the behavioral 
and population level consequences of exposure to 
PPCPs.  Although this study focused on the effects of 
wastewater on larval behavior, it is possible that any 
life stage could be susceptible to lethargy induced by 
exposure to wastewater.  Similarly, different species 
can also exhibit differences in how they respond to 
contaminants (Relyea 2009), and it is unclear whether 
these behavioral effects persist beyond the acute 
exposure to wastewater.  Although these data exhibit 
consistent effects of exposure to treated wastewater, it 
also highlights significant research needs to understand 
how wastewater treatment CWs will affect amphibians.  
Anurans rapidly colonize and breed in wastewater 
treatment CWs (Ruiz et al. 2010; Zeitler et al. 2018), 
but poor larval development regularly results in reduced 
adult fitness (Werner 1986).  The presence of wastewater 
treatment CWs, therefore, may negatively contribute to 
population-level success of local amphibians.
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