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Abstract—Understanding habitat associations and organismal activity patterns can help scientists and managers
gain insight to the invasive potential of a species; however, false-negative errors are common in detecting species
within an area. A false negative error often takes the form of a question: was the species absent or did it just
go undetected? We investigated how the assumption of perfect detection influences interpretation of habitat
associations and activity patterns of the Mediterranean Gecko, Hemidactylus turcicus (Reptilia: Gekkonidae),
which has been introduced to the Southeastern U.S. We conducted nocturnal surveys in Starkville, Mississippi,
USA, and detected the Mediterranean Gecko at 17 of 22 sites on at least one occasion. We found that models
that do (Single-season Single-species Occupancy Model) and do not (Logistic Regression) account for imperfect
detection had a 15% difference in estimates of occupancy and were not dissimilar in the significance of covariates.
Inference from our Occupancy Model indicated that well-defined eaves, minutes after sunset, and pedestrian traffic
all influence detection probability, but no covariates were associated with Mediterranean Gecko occupancy. In
contrast, results from the Logistic Regression model indicated that well-defined eves were of significance to the
presence of Mediterranean Gecko. Interpretations of habitat associations and activity patterns can be misleading
when imperfect detection goes unaccounted. We hope that more herpetologists take approaches to account for
imperfect detection, focusing on sampling and survey methods that can confidently assess the distributional status,
habitat associations and activity patterns, and eradication effectiveness of invasive species.

Key Words.—activity patterns; detection probability; habitat associations; human disturbance; invasive species; Occupancy
Modeling

INTRODUCTION 1993). Indeed, a now large body of literature indicates

that false-negative errors in surveys, whereby a species

The Mediterranean Gecko (Hemidactylus turcicus,
Reptilia, Gekkonidae) is a small, nocturnal lizard
native to the Mediterranean Basin and Western Asia
that was discovered in Key West, Florida, USA, in
the early 20th Century (Fowler 1915; Meshaka 2011).
Since its introduction, it has spread to urban areas in
the southern U.S. (Powell et al. 2016) and is thought
to compete with native herpetofauna such as treefrogs
(Amphibia: Hylidae) and the Green Anole (A4nolis
carolinensis; Meshaka et al. 2006; Nelson and Carey
1993) and depress populations of spiders and insects
(Gomez-Zlatar et al. 2006; Nelson and Carey 1993;
Punzo et al. 2005). Previous studies have sought to
characterize habitat associations and activity patterns of
the Mediterranean Gecko to gain a better understanding
of its invasive potential (Gomez-Zlatar et al. 2006;
Meshaka et al. 2006; Nelson and Carey 1993; Williams
and McBrayer 2007). It is possible, however, that
Mediterranean Geckos go undetected at sites during
surveys even when they are present (Nelson and Carey
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remains undetected at sites that it in fact occupies, is
the rule and not the exception (Guillera-Arroita et al.
2014; Kéry 2002; Kéry and Royle 2016; MacKenzie et
al. 2017; Mazerolle et al. 2007). From a biogeographic
perspective, as was the viewpoint of Nelson and Carey
(1993), false-negatives of species occurrence can cause
the area and extent of occurrence of a species to be
underestimated (Kéry 2002; Rout et al. 2009; Kéry and
Royle 2016; MacKenzie et al. 2017).

When modeling habitat associations, and activity
patterns, false-negative errors can cause dubious
interpretations (Gu and Swihart 2004; Kéry 2008;
Mazerolle et al. 2005; Wenger and Freeman 2008). The
danger lies in concluding that some pattern exists for
the population parameter of interest (e.g., occupancy
or abundance) when truthfully the pattern is one of
incidence (Kéry 2008; Valenzuela-Sanchez et al. 2019).
For instance, Valenzuela-Sanchez et al. (2019) found
that the daily microclimatic fluctuations and density of
saplings influenced estimates of both the detection and
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abundance of the Southern Darwin’s Frog (Rhinoderma
darwinii). However, the sign of the relationship for each
response differed between covariates; as microclimatic
fluctuation increased detection probability increased
and estimated abundance decreased, and vice versa.

Our understanding of the habitat associations and
activity patterns of the Mediterranean Gecko has,
perhaps, been distorted by imperfect detection (Nelson
and Carey 1993). Thus, the aim of our study was to
determine how interpretation of habitat associations and
activity patterns has been influenced by the assumption
of perfect detection. We compared the results of two
sampling and modeling approaches, known to give
different levels of insight to species-habitat associations.
The first approach, and one more common in the
literature, used a single-occasion sample design paired
with a Logistic Regression, which assumes perfect
detection. The second approach used a multiple-
occasion sampling design and the Occupancy Model of
Kéry (2002), which accounts for imperfect detection.
Thus, ours is a case study with the Mediterranean
Gecko of how the assumption of perfect detection can
mislead habitat associations and activity patterns of
herpetofauna, a potentially wide-spread problem in the
field of herpetology.

MATERIALS AND METHODS

Study area and site selection—We followed
sampling guidelines of Nelson and Carey (1993) and
White and Husak (2015) for the Mediterranean Gecko,
which suggests limiting surveys to the urban center
of the largest town in a county (i.e., local province)
where old buildings are common. We conducted our
surveys in Starkville, Oktibbeha County, Mississippi,
USA (33.4638°N, 88.8146°W). We presumed that
the Mediterranean Gecko occupied some portion of
buildings in the urban center of Starkville as they have
been observed on the nearby campus of Mississippi
State University (Altig et al. 2016). The urban center
of Starkville has a city block design (approximately 0.5
km?) with one- to four-story masonry and wood-sided
buildings that are used as municipal offices, businesses,
restaurants, and residential living spaces.

From pilot sampling, we estimated that we could
complete 22 surveys in a single evening (approximately
1900-2200). We designed sampling so that we could
complete a survey at each site in a single evening
which allowed us to complete surveys at multiple
occasions over a relatively short time and meet the
closed population assumptions of Occupancy Modeling
(see below). We used Google Maps (www.google.
com/maps) to draw road vectors in the urban center
of Starkville. We then used the sp package (Bivand et
al. 2013) in R (R Core Team 2020) to select 22 sites

in a stratified sampling design so that sites were non-
adjacent, and surveys could be considered independent.
For our purposes, sites are defined as a building’s wall
accessible from public sidewalks (Nelson and Carey
1993; White and Husak 2015).

Sampling design and survey methods.—We design
our sampling so as to nest a classical sampling design
(i.e., single-occasion; Mazerolle et al. 2007; Mazerolle
2015) within a standard sampling design for occupancy
modeling (i.e., multiple-occasions; MacKenzie and
Royle 2005). To account for imperfect detection, at
least two sampling occasions on a closed population
are necessary: a closed population experiences no
colonization or extinction at sites within and between
sampling occasions (MacKenzie et al. 2017). Additional
sampling must be conducted when detection probability
drops below 0.8 (Kéry 2002; MacKenzie and Royle
2005), however. We estimated detection probability
(0.63) and unbiased occupancy (0.62) from encounter
histories in Gomez-Zlatar et al. (2006) to determine the
number of sampling occasions needed in our study to
detect the target organism on at least one occasion at
sites that it truly occupies (Supplemental Information).
Referencing the standard design table in MacKenzie
and Royle (2005), we determined that three sampling
occasions were necessary for a total of 66 surveys (22
sites x three sampling occasions). We conducted surveys
on 27 and 30 September 2019 and 2 October 2019 as
average low temperature during this time in Starkville
(17° C) is within the range conducive to Mediterranean
Gecko activity (16°-31° C; Gomez-Zlatar and Moulton
2005). The sequence of sites differed for each sampling
occasion, but the first survey of each sampling occasion
began approximately 30 min after sunset.

We apply the term habitat sensu Morris (1987)
as spatial units with a similar suite of environmental
variables and distinguishable from other spatial units
with different suites of environmental variables, together
constituting a set of habitats. Thus, each site was
assigned a habitat, constituent environmental variables
defined below. We use the term conditions to define the
suite of environmental variables that vary from survey
to survey (i.e., between sampling occasions) at a site
and can affect animal behavior (MacKenzie et al. 2017).
We only measured habitat and conditions that previous
research had concluded or presumed to be significant
indicators of habitat association or influential on activity
patterns of the Mediterranean Gecko.

We recorded the time at which surveys began
and ended to account for variable activity of the
Mediterranean Gecko (Gomez-Zlatar and Moulton
2005; Mateus and Jacinto 1998). For each survey, we
systematically searched the surface of walls, going
left to right, top to bottom with flashlights to detect
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geckos (Gomez-Zlatar et al. 2006; White and Husak
2015). 1If at least one gecko was encountered during
a survey, we recorded a 1 (detection) and a 0 (non-
detection) otherwise. In defining our areas of search,
we evaluated detection probability as a function of
time and area searched, metrics defined below. We
estimated pedestrian traffic as the number of passersby
within 3 m of a site during the time of a survey (i.e.,
pedestrians using the sidewalk nearest the building wall
being searched). We included pedestrian traffic because
human disturbance presumably causes individuals to
retreat to nearby refugia and reduce its availability for
detection (Williams and McBrayer 2007). We recorded
artificial lighting as present if there were street lamps
or lights on the site (i.e., building wall) or if lights from
adjacent buildings, including across the street, directly
illuminated the site. Artificial lighting has been reported
to positively influence the presence of Mediterranean
Geckos as it increases prey availability and the ability of
surveyors to detect the Mediterranean Gecko (Meshaka
et al. 2006; Williams and McBrayer 2007). During
daytime hours of 28 September 2019, we measured the
length and height of each building wall sampled and
recorded the presence of well-defined eaves (> 0.3 m
overhang) on buildings as these are thought to provide
refuge and points of ambush (Rose and Barbour 1968;
Selcer 1986; Nelson and Carey 1993; Williams and
McBrayer 2007; White and Husak 2015). Habitat and
conditions varied, allowing us to estimate their effects
on detection and occupancy (Table 1).

Statistical analyses.—To understand how the
assumption of perfect detection influences interpretation
of habitat associations and activity patterns of the
Mediterranean Gecko we compared results from two
models (Gorosito et al. 2016; Mazerolle et al. 2005). We
fit detection/non-detection data from the first sampling
occasion (i.e., classical sampling design) using a Logistic
Regression, as is common in the literature for binary
response data and assumes perfect detection (Pearce
and Ferrier 2000; Gu and Swihart 2004; Guillera-
Arroita et al. 2015), to estimate apparent occupancy (. ;
Guillera-Arroita et al. 2014; MacKenzie et al. 2017).
We fit detection/non-detection data from all sampling

occasions (i.e., standard occupancy sampling design)
using a Single-species Single-season Occupancy Model
(hereafter Occupancy Model), which does not assume
perfect detection, to estimate unbiased occupancy (V)
and detection probability (p) simultaneously (Kéry
2008; MacKenzie et al. 2002, 2017). Here, p is defined
as the probability of detecting at least one target animal
during a survey.

Occupancy Models are essentially two hierarchically
linked Logistic Regressions that estimate p given that
the target species is available for detection at site i
during survey ¢ and adjusts y using p (MacKenzie et
al. 2002, 2017; O’Donnell and Semlitsch 2015; Kéry
and Royle 2016). Thus, results of Occupancy Models
are reported in two parts, one for the occupancy-portion
and one for the detection-portion. Habitats are modeled
in the occupancy-portion, but conditions are restricted
to the detection-portion. As habitat can affect detection
of animals, however, habitat and conditions may be
included in the detection-portion of the occupancy
model. The major assumptions of Occupancy Models
are (1) that y for a site remains constant through the
season (sampling period), (2) that y and p are equal
across sites or heterogeneity thereof is modeled by
habitat and habitat and conditions, respectively, and (3)
that detections at sites are independent. Mathematical
details of Occupancy Models are beyond the scope of
this paper, and we refer readers to Kéry an Royle (2016)
and MacKenzie et al. (2017) for more details.

The Logistic Regression was fit using the stats
package (R Core Team 2020) and the Occupancy Model
using the unmarked package (Fiske and Chandler 2011)
in R. We included well-defined eaves, presence of
artificial lighting, minutes after sunset, and pedestrian
traffic as covariates in the Logistic Regression when
estimating y . Only well-defined eaves and presence
of artificial lighting were included in the occupancy-
portion of the Occupancy Model (i.e., habitat influence
on the estimation of ), while well-defined eaves,
presence of artificial lighting, minutes after sunset,
and pedestrian traffic were included in the detection-
portion (i.e., influence of habitat and conditions on
the estimation of p; see Mazerolle 2015 for details
on specifying occupancy models in the unmarked

TaBLE 1. Summary statistics for conditions (i.e., temporal) and habitat types (i.e., spatial) for Mediterranean Geckos (Hemidactylus
turcicus) found on buildings in Starkville, Mississippi, USA. Conditions varied between surveys and were measured during each; habitat
were constant between surveys and measured once. Values in parentheses are for the first sampling occasion. Effort was variable among
surveys and was included as an offset. The abbreviation SD = standard deviation.

Covariate Level Mean SD Present (n) Absent (n)
Effort (m? surveyor!) Conditions 16.71 (15.19) 10.21 (9.67)

Minutes after sunset Conditions 90.44 (92.91) 40.58 (42.69)

Pedestrian traffic (pedestrians minutes') Conditions 0.44 (0.35) 0.68 (0.49)

Well-defined eaves Habitat 14 8
Presence of artificial lighting Habitat 13 9
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package). Effort varied from survey to survey, so we
used the area of building walls (length X height, both
in meters) divided by minutes searched per person
(meters® minutes™ person™) as an offset covariate in both
models (first sample occasion mean = 15.19, standard
deviation [SD] = 9.67; all sample occasions mean
= 16.71, SD = 10.21). Continuous covariates were
scaled to a mean of zero and standard deviation of one
and factors were dummy coded prior to analysis. We
tested model assumptions for the Logistic Regression
using goodness-of-fit statistics and permutation tests (n
=4,999) in the DHARMa package (Hartig 2019). For
the Occupancy Model, we tested model assumptions
using the MacKenzie-Bailey (2004) goodness-of-fit
bootstrap test (n = 4,999). We tested covariates in both
models using #-tests and considered covariates influential
on the response if their P-value < 0.05. We deciphered
the effect of a covariate on a response by holding all
other covariates at their mean and varying the covariate
of interest; we then plotted effects on the response scale.
We calculated Nagelkerke’s 72, analogous to Pearson’s 72
for Linear Regression, as a measure of model fit using the
rcompanion package (Mangiafico 2019) for the Logistic
Regression and using the unmarked package (Fiske and
Chandler 2011) for the Occupancy Model. We estimated
vy, and y from each model while holding covariates at
their mean values. We calculated a 95% confidence
interval (CI) for the log-odds of each estimate as

logit(X) + Z x logit(S.E.) €8

where logit(X) is the log-odds estimate of either y_or v,
Z is the Z-score corresponding to the 95% CI (1.96), and
logit (SE) is the log-odds standard error of the log-odds
estimate. We then transformed each of the log-odds
95% CI into their proportional form using

elogit(95% ()]

1 + el0git(95% CI) @

where e is Euler’s number (approximately 2.71828)
and logit (95% CI) corresponds to the log-odds 95% CI
estimated using equation 1.

We compared statistical significance of covariates
(o = 0.05) between the Logistic Regression model
and portions of the Occupancy Model. If a covariate
was significant in the Logistic Regression model,
we interpreted it as influential on v . If and only if a
covariate was significant in the occupancy-portion of
the Occupancy Model, we interpreted it as influential
on . If a covariate was significant in the detection-
portion of the Occupancy Model, regardless of
whether it was or was not significant in the occupancy-
portion, we interpreted it as influential on p. If the
significance of covariates corresponded between the

Logistic Regression model and the occupancy-portion
of the Occupancy Model, we considered the models
complementary and that the assumption of perfect
detection to have little effect on inferences about habitat
associations and activity patterns of the Mediterranean
Gecko. If significant covariates differed between the
Logistic Regression model and the Occupancy Model
and there was at least one covariate significant in the
detection-portion of the Occupancy Model, then we
considered the models contradictory and the assumption
of perfect detection invalid.

REsuLTs

The Mediterranean Gecko was encountered at 14
locations during our first sampling occasion, 13 on
the second occasion, and 12 on the third occasion (39
of 66 surveys). It was encountered on at least one
sampling occasion at 17 of 22 sites. Tests of uniformity
(Kolmogorov-Smirnov D = 0.16, P = 0.565) and
dispersion (observed dispersion = 1.16, P = 0.174) did
not indicate violation of assumptions in the Logistic
Regression, so we proceeded with model interpretation.
The Logistic Regression indicated that well-defined
eaves was the only covariate that was significant (Table
2). Apparent occupancy (y, ) was estimated to be 0.68
(95% CI = 0.43-0.85) when all covariates were held at
their mean value. Apparent occupancy (y ) was 0.85
(0.60-0.96) when eaves were present as compared with
0.26 (0.07-0.63) when not present (Fig. 1). Nagelkerke’s
r* for the Logistic Regression model was 0.07.

The MacKenzie-Bailey goodness-of-fit test did not
indicate a violation of Occupancy Model fit (¢ = 0.72,
x> =291, P = 0.603, so we proceeded with model
interpretation. No habitat types were significant in the
occupancy-portion of the Occupancy Model (Table
3). Unbiased occupancy (y) was estimated to be 0.79
(0.56-0.92) when all variables were held at their mean

TaBLE 2. Logistic Regression results for apparent occupancy
(ya) of Mediterranean Geckos (Hemidactylus turcicus) found on
buildings in Starkville, Mississippi, USA. Coefficient estimates
given in log-odds scale and probability scale (in parentheses).

P values < 0.05 are indicated in bold and are significant. The
abbreviation SE = standard error.
Covariate (y ) Coefficient SE t P
Intercept -0.54 (0.37) 1.01 -0.53 0.597
Well-defined eaves  2.82 (0.94) 1.08  2.61 0.009
Presence of
artificial lighting -0.86 (0.30) .15 -0.75 0455
Minutes after
sunset 0.34 (0.58) 0.68 0.50 0.614
Pedestrian traffic
(pedestrians
minutes™) 0.63 (0.65) 0.64  0.98 0.328

528



Herpetological Conservation and Biology

(a)

1.0 1.0
| P
2§0.8— & 08+
§§0'6_ £ 06
EE £
S 204 = 04
g5 8
22 E
2 202 - 2 024
[a]

0.0 - 0.0 -

1.0

0.8

0.6

0.4

Detection probability (p )

0.2

0.0

|3

T T T T T T 1
105 125 145 165

Minutes after sunset (min.)

(%)

Pedestrians per minute (ped. min.”)

Ficure 1. Detection probability and apparent occupancy as a function of presence of well-defined eaves (a), minutes after sunset (b), and
pedestrian traffic (c) for Mediterranean Geckos (Hemidactylus turcicus) found on buildings in Starkville, Mississippi, USA. Filled circles
in subplot a indicate estimates of detection from the detection-portion of the occupancy model while open circles indicate estimates of
apparent occupancy from the logistic regression; error bars represent 95% Confidence Interval (CI). Dashed lines represent 95% CI for

continuous covariates.

TaBLE 3. Occupancy Model results for unbiased occupancy (y) and
detection probability (p) for Mediterranean Geckos (Hemidactylus
turcicus) found on buildings in Starkville, Mississippi, USA.
Coefficient estimates given in log-odds scale and probability scale
(in parentheses). P-values < 0.05, indicated in bold, are significant.
The abbreviation SE = standard error.

Coefficient SE t P

Habitat (y)

Intercept 0.57(0.63) 1.05 0.55 0.584

Well-defined eaves 1.24(0.78) 1.08 1.15 0.248

Presence of artificial

lighting -0.04 (0.55) 1.11 -0.03 0.973
Conditions (p)

Intercept 0.31(0.75) 1.02 030 0.763

Well-defined eaves 2.13(0.90) 1.02 2.08 0.037

Presence of artificial

lighting 1.31(0.58) 1.06 124 0.214

Minutes after sunset 1.51(0.83) 0.59 2.57 0.010

Pedestrian traffic

(pedestrians minutes™) -1.78 (0.16) 0.57 -3.12 0.002

value. Well-defined eaves, minutes after sunset, and
pedestrian traffic, however, were all significant for the
detection-portion of the Occupancy Model (Table 3).
Detection probability (p) was estimated to be 0.92 (0.75—
0.98) when all variables were held at their mean value;
p was 0.96 (0.82-0.99) when eaves were present and
0.75 (0.39-0.93) when not present (Fig. 1). Detection
probability (p) increased with minutes after sunset but
decreased with pedestrian traffic (Fig. 1). Nagelkerke’s
72 for the Occupancy Model was 0.77.

DiscussioN

We investigated the assumption of perfect detection
when testing habitat associations and activity patterns
of the Mediterranean Gecko. Understanding these
relationships can help scientists and managers gain
insight to the invasive potential of the Mediterranean
Gecko (Christy et al. 2010). Previous work has assumed
that the Mediterranean Gecko was detected without error
at sites that it occupied. Recent literature, however,
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suggests this cannot be safely assumed so we compared
models that do and do not assume perfect detection.
Even when acknowledged, there has been no formal
treatment for false-negative errors in surveys for the
Mediterranean Gecko (Nelson and Carey 1993). This is
concerning as our study indicates that the Mediterranean
Gecko was not perfectly detected at all sites that it
occupied and suggests that false-negative errors have
misled interpretations of its habitat associations and
activity patterns.

When examining the statistical significance (o =
0.05) of the effects of covariates on occupancy, there
was complete incongruence between models that do
and do not assume perfect detection. When using a
classical sampling design and Logistic Regression,
y_ was underestimated (15% difference with ) and
spurious associations between habitat and vy, were
present. The Logistic Regression indicated that y_was
influenced by well-defined eaves, while, in truth, well-
defined eaves only influenced p. Furthermore, activity
pattern associations were not significant in the Logistic
Regression, differing from both the Occupancy Model
and previous literature (Mateus and Jacinto 1998;
Williams and McBrayer 2007).

Unlike the Logistic Regression, the Occupancy
Model did not indicate that y was influenced by the
presence of well-defined eaves. In fact, no covariates
were significant in the occupancy-portion of the model
suggesting that the Mediterranean Gecko is a generalist
whose occupancy within urban areas is limited only
by local dispersion (Locey and Stone 2006). There
were, however, both habitat and conditions that were
influential on p. This suggests that habitat associations
and activity patterns found in past studies may need
further investigation, but most results in the Occupancy
Model support past conclusions. The Occupancy Model
indicated that p increases with minutes after sunset
(Mateus and Jacinto 1998), decreases with pedestrian
traffic (Williams and McBrayer 2007), varies with the
presence of well-defined eaves (Nelson and Carey 1993;
Williams and McBrayer 2007), and the presence of
artificial lighting has little to no effect on p (Meshaka
et al. 2006; Williams and McBrayer 2007). There are,
of course, numerous other factors at various spatial and
temporal scales that could influence y and p (e.g., wall
color, perch height, prey abundance, and presence of
congenerics; Gomez-Zlatar et al. 2006; Meshaka et al.
2006; Williams and McBrayer 2007). Future studies
that examine the habitat, macrohabitat, and microhabitat
associations and activity patterns should account for
imperfect detection, lest false-negative errors mislead
investigators.

There are other approaches to account for false-
negative errors. A common approach is to use a
Mixed-effects Logistic Regression, which uses

multiple-occasion sampling to estimate apparent
detection (pa) and adjust y_by p . Such an approach
is powerful when assumptions are met, among which
is the assumption that the target organism is known to
be present at sites but may not be encountered due to
environmental variables and unknown factors (Chen et
al. 2009; Mclntyre et al. 2020). We fit such a model
(Supplemental Information) and found similar results
to the Occupancy Model; however, these estimates
had greater uncertainty than with the Occupancy
Model and it is impossible to disentangle the effects
of covariates between the detection process from the
state process (Kéry and Royle 2016; MacKenzie et al.
2017). Additionally, we could only use data from sites
where the Mediterranean Gecko was detected on at least
one occasion to meet the primary assumption. Such
an approach can be useful under controlled settings
(see Chen et al. 2009), but when surveys have been
conducted without this knowledge, it seems pertinent to
use models that can accommodate all data to estimate
p when y at a site is unknown, i.e., Occupancy Models
and, more generally, N-mixture models (MacKenzie et
al. 2002, 2017; O’Donnell and Semlitsch 2015; Kéry
and Royle 2016).

A final point of interest, sampling designs for
Occupancy Modeling can be tweaked so that temporal
replication for conditions can be substituted with spatial
replication (i.e., sub-sites; Kéry and Royle 2008, 2016).
In practice, multiple sites within the largest town within
a county level can be used for distributional studies of
the Mediterranean Gecko, which is the spatial scale at
which these studies have been conducted typically (see
Nelson and Carey 1993; Meshaka et al. 2006; White and
Husak 2015). Sampling designs would be optimized to
save time and travel while preserving replication needed
to estimate y and p simultaneously (Kéry and Royle
2008, 2016; Petito et al. 2014). We did such an exercise,
using multiple walls as replicates within urban centers
of the largest towns in neighboring counties and
found that space-for-time substitution was effective
and efficient (Supplemental Information).  Such
designs may be most effective when involving citizen-
scientists (Altwegg and Nichols 2019), especially as
the Mediterranean Gecko and congeners are expected
to expand in the U.S. (Weterings and Vetter 2018). Our
study is but an example of what we believe is a wide-
spread bias in herpetofaunal-habitat studies (Mazerolle
etal. 2005, 2007; Kellner and Swihart 2014). We hope
that more herpetologists take approaches to account for
imperfect detection, focusing on sampling and survey
methods that can confidently assess the distributional
status, habitat associations and activity patterns,
and eradication effectiveness of invasive species
(Mazerolle et al. 2007; Christy et al. 2010; Nafus et
al. 2020).
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