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Abstract.—Larval Gray Tiger Salamanders (Ambystoma tigrinum diaboli) that inhabit saline ponds in the Prairie 
Pothole Region of Canada provided us the opportunity to study the osmotic strategy used by amphibians to survive 
in elevated salinity environments.  To better understand the osmotic and metabolic challenges these larvae face, 
we investigated the effect of environmental salinity on their nitrogenous waste production and metabolic function.  
In June 2018, we collected larvae from eight ponds with different specific conductivities.  We measured and used 
specific conductivities as an indicator of environmental salinity.  We measured nitrogenous waste (ammonia, urea, 
and total nitrogen) excretion rates, liver citrate synthase activity, and intestine Na+/K+ ATPase activity.  Our results 
indicated larval A. t. diaboli were ammonotelic, with ammonia comprising 65.5% of nitrogenous waste excretion.  
We did not find a significant relationship between specific conductivity of the pond environment and ammonia 
production or liver citrate synthase activity.  There was a relationship between pond-specific conductivity and 
larvae urea production, larvae total nitrogen production, and larvae intestine Na+/K+ ATPase activity.  Based on the 
similarities in larval A. t. diaboli nitrogenous waste excretion and enzymatic activity across the variation in pond 
conductivity, these salamanders did not appear osmotically stressed and had acclimated to their saline environment.

Key Words.—Ammonia, citrate synthase activity, Na+/K+ ATPase activity, Prairie Pothole Region, specific conductivity, 
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Introduction

Amphibians are typically associated with freshwater 
habitats and are generally considered saline intolerant 
due to their highly permeable skin and inability to 
maintain ion and water balance while in elevated 
salinity for prolonged periods of time (Gordon et al. 
1961; Balinsky 1981).  There are a few exceptional 
species of amphibian that can survive prolonged periods 
of time in elevated salinity (Gordon et al. 1961; Gordon 
1962; Kirschner et al. 1971).  Elevated saline habitats 
can be characterized as either slightly saline (1,000–
3,000 ppm), moderately saline (3,000–10,000 ppm), 
very saline (10,000–35,000 ppm) or brine (> 35,000 
ppm; Swenson and Baldwin 1965).  Observations of 
saline-tolerant amphibians are mostly of adult stages 
(not juveniles) living in coastal areas influenced by 
oceanic salt, inland ditches exposed to road deicing 
salt or secondary salinization, or naturally saline inland 
lakes and ponds (see Hopkins and Brodie 2015).  Saline 
tolerance appears to be advantageous in the ability to 
inhabit spaces that other amphibian species cannot, but 
comes with some limitations.  Saline-tolerant amphibian 
species can withstand the short-term effects of elevated 
salinity, but the threshold between salinity tolerance 

and lethality varies depending on the species (Balinsky 
1981).  Furthermore, previous research has focused on 
the short-term impact of elevated salinity on amphibians, 
but the long-term effects have yet to be determined.  
Understanding long-term effects is necessary to better 
understand the potential impact of future increases 
in environmental salinity caused by climate change.  
Recent studies have focused on the morphological 
impacts of elevated salinity on amphibians (Alexander 
et al. 2012; Hua and Pierce 2013; Albecker and McCoy 
2017), but the physiological mechanisms by which 
some amphibians withstand elevated salinity are still 
poorly understood.

To mitigate the effects of elevated salinity, saline-
tolerant amphibians use osmoregulatory tissues such 
as the skin, gills, and kidneys to regulate ions and 
water (Gordon et al. 1961; Schmidt-Nielsen and Lee 
1962; Uchiyama and Yoshizawa 1992), and forms 
of nitrogenous waste excretion (Wood et al. 1989).  
Depending on the species and environment, amphibians 
may excrete nitrogenous wastes in the form of ammonia, 
uric acid, or urea.  The primary form of nitrogenous 
waste produced varies, and each waste product used 
presents different tradeoffs regarding energy and water 
allocation (Shoemaker et al. 1992; Loong et al. 2002; 
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Hillman et al. 2009).  Ammonia is less costly to produce 
compared to other forms of nitrogenous waste, but it 
is toxic in high concentrations and needs to be rapidly 
diluted in large volumes of water to mitigate its harmful 
effects (Wright 1995; Moyes and Schulte 2008; Hillman 
et al. 2009); therefore, ammonotelism (excretion of 
ammonia and ammonium ions) is commonly seen in 
adult and larval stages of aquatic species of amphibians 
(Wood et al. 1989; Boutilier et al. 1992; Loong et al. 
2002; Vanni et al. 2017).  Uric acid is energetically 
costly to produce, but requires less water than either 
urea or ammonia production (Shoemaker et al. 1972; 
Wright 1995; Moyes and Schulte 2008; Hillman et al. 
2009).  Urea excretion is more common than either 
ammonia or uric acid production in terrestrially adapted 
adult amphibians (Hillman et al. 2009).  Although urea 
also is energetically costly to produce, it requires less 
water compared to ammonia production (Gordon and 
Tucker 1965; Wright 1995; Moyes and Schulte 2008; 
Hillman et al. 2009).  For some saline-tolerant species, 
urea production has an added benefit: the potential to 
store urea in their plasma and use it as an osmolyte to 
temporarily survive elevated salinity (McClanahan et al. 
1994; Hillman et al. 2009).  The use of urea can increase 
plasma osmolarity above osmolarity of the aquatic 
environment, thereby allowing external water to enter 
the skin, avoiding dehydration, and aiding in ion and 
water balance (Balinsky 1981; McClanahan et al. 1994).

One of the most thoroughly studied marine-tolerant 
amphibians is the adult Crab-eating Frog (Fejervarya 
cancrivora; Gordon et al. 1961).  To survive in brackish 
Mangrove Swamps in southeastern Asia, adult F. 
cancrivora substitute urea in place of plasma sodium 
and chloride ions (Gordon et al. 1961).  This allows 
adult F. cancrivora to switch from an osmoregulating 
strategy, used by most freshwater amphibians, to an 
osmoconforming strategy (Gordon et al. 1961; Gordon 
and Tucker, 1965), otherwise used only by marine 
elasmobranchs and coelacanths (Yancey and Somero 
1980; Wright 1995), thereby minimizing the cost of water 
balance and water loss to their surrounding environment 
(Wright et al. 2004).  Few amphibian species are known 
to use an osmoconforming strategy; however, additional 
investigations on saline-tolerant species could indicate 
this strategy is more common than known.

The Gray Tiger Salamander (Ambystoma tigrinum 
diaboli) primarily inhabits freshwater ponds, lakes, 
and other wetlands (Kirschner et al. 1971; Lannoo et 
al. 2005); however, laboratory investigations indicate 
their larvae can tolerate moderate saline environments 
(Kirschner et al. 1971; Romspert and McClanahan 
1981; Gasser and Miller 1986).  Larval Blotched Tiger 
Salamanders (A. tigrinum melanostictum) from eastern 
Washington, USA, produce urea while living in saline 
aquatic environments (Gasser and Miller 1986), but the 

association of urea production and development stage or 
onset of metamorphosis are unknown.  Osmoregulatory 
tissues involved with salt and water balance strategies, 
the energetic cost of living in saline environments, 
and the mechanisms(s) larvae use to mitigate elevated 
salinity have not been examined.  We studied the 
osmotic and metabolic challenges occurring in larval 
A. t. diaboli living in these unusual saline ponds in 
the Canadian Prairie Pothole Regions (CPPR).  The 
CPPR is comprised of many small lakes ranging from 
freshwater to brine, and the salt associated with the 
increased salinity is sodium/magnesium sulfate rather 
than sodium chloride (Last and Ginn 2005; Wissel et 
al. 2011).  Historically, amphibian saline tolerance is 
examined in either marine environments or systems 
impacted by road salts, both of which are predominantly 
comprised of sodium chloride (Karraker et al. 2008; 
Libes 2009; Petranka and Francis 2013).

This study has two objectives: to determine whether 
pond salinity affects the production of urea by larval A. 
t. diaboli as seen in adult F. cancrivora, and to determine 
if energetic costs differ between larvae of A. t. diaboli 
in elevated saline environments and those living in 
more typical freshwater environments.  We hypothesize 
that environmental salinity would change nitrogenous 
waste production in larval A. t. diaboli living in 
freshwater versus saline ponds.  We predicted that A. 
t. diaboli larvae living in ponds with higher salinity 
will produce more urea (and potentially less ammonia) 
than individuals living in ponds with lower salinity.  To 
determine osmotic stress of larval A. t. diaboli living in 
elevated salinity, we measured intestinal Na+/K+ ATPase 
activity, which is the main ionoregulatory enzyme 
used in osmoregulatory tissues of most animals.  To 
determine energetic costs of larval A. t. diaboli living 
in elevated salinity, we measured liver citrate synthase 
activity, which is a general indicator of metabolic rate.  
We also hypothesized that environmental salinity would 
change larval citrate synthase activity and Na+/K+ 

ATPase activity living in freshwater versus saline ponds; 
therefore, we predicted that A. t. diaboli larvae living 
in elevated salinity will have higher citrate synthase 
and Na+/K+ ATPase activity compared to freshwater 
individuals.  To investigate this, we determined rates of 
nitrogenous waste (ammonia, urea, and total nitrogen) 
production, liver citrate synthase activity, and intestine 
Na+/K+ ATPase activity for individual larvae inhabiting 
higher salinity and freshwater ponds.

Materials and Methods

Field sampling.—During May and June 2018, we 
examined the water chemistry of 104 pothole ponds 
near Saskatoon, Saskatchewan, Canada, for specific 
conductivity (µS/cm; our proxy for salinity) and the 
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presence of larval A. t. diaboli (Table 1).  We found A. t. 
diaboli larvae in 17 ponds, and chose eight ponds for this 
study (ponds A through H; Table 2).  From each pond, 
we used a YSI (ProPlus Multiparameter Meter, Yellow 
Springs, Ohio, USA) to measure specific conductivity; 
we collected all measurements at depths ranging from 
0 to 1 m.  In June 2018, we collected larvae from these 
eight ponds using a variety of methods, including 
minnow traps, dip-netting, and seining (Chalmers and 
Droege 2002; Werner et al. 2007; Nowakowski and 
Maerz 2009).

Excretion trials.—To determine nitrogenous waste 
excretion rates, we initiated excretion trials within 5 
min of larvae collection from nets or traps (Burggren 
and Warburton 2007).  We conducted excretion trials 
on 74 larvae: 10 larvae from most ponds, with the 
exceptions of ponds E (nine larvae used) and F (five 
larvae used).  When collected, we placed larvae into an 
18.9 L container filled with pond water (collected from 
their respective ponds) that had been filtered through a 

Whatman pre-combusted, 0.45 µm GF/F, filter (Cytiva, 
Marlborough, Massachusetts, USA).  We then gently 
transferred larvae into individual 500 ml plastic excretion 
containers filled with 100–150 ml of filtered pond water.  
After transfer to excretion containers, we gave larvae 5 
min to acclimate prior to initial water sample collection.  
We then collected two, 1 ml water samples from each 
container: an initial 1 ml water sample (time 0 min), and 
another after 30 min (Whiles et al. 2009).  Following 
removal of each 1 ml sample, we added 1 ml of filtered 
pond water back to the excretion container to maintain 
the original volume of the water.  We froze and stored 
water samples on dry ice for later analysis.

We used 0 min and 30 min water samples from 
excretion trials to determine larvae ammonia and urea 
excretion rates.  We ran ammonia assays in duplicate 
using the Bower and Holm-Hansen (1980) salicylate/
hypochlorite method.  We processed microplates 
in the dark at 25° C for 1 h, then read at 595 nm on 
a microplate spectrophotometer (SPECTRAmax 384, 
Molecular Devices Corp., Sunnyvale, California, USA).  
Ammonia concentrations were calculated as mass-
specific excretion rates and were expressed as N-mM 
g-1 h-1.  We also ran urea assays in duplicate, using 
the Rahmatullah and Boyde (1980) deproteinization 
method.  We kept microplates in a 92° C bath for 30 min, 
then read at 540 nm on a microplate spectrophotometer.  
We also calculated urea concentrations as mass-specific 
excretion rates and were expressed as 2N-mM g-1 h-1.

Tissue collection.—Following excretion trials, we 
euthanized all larvae using 2 mg/L of Orajel® (Church 
and Dwight Company, Inc., Ewing, New Jersey, 
USA; Crook and Whiteman 2006; Cecala et al. 2007) 
suspended into excretion containers.  We weighed 
larvae, rapidly excised the liver and intestine, flash froze 

Table 1.  Preliminary pond sampling in Saskatoon, Saskatchewan, 
Canada.  Range and group means ± standard error for pond 
specific conductivity where larval or adult Gray Tiger Salamanders 
(Ambystoma tigrinum diaboli) were found.  We sampled ponds for 
salamanders using minnow traps, seines and dip nets. 

Pond Type
No. 

Ponds

Specific 
Conductivity

Range (µS/cm)

Mean Specific 
Conductivity 

(µS/cm)

All Sampled Ponds 104 137–6,810 1,577.37 ± 
127.71

Ponds with Larvae 17 462–4,045 1,554.29 ± 
250.44

Ponds with Adults 13 462–3,025 1,506.46 ± 
249.84

Ponds with Larvae 
and Adults

9 462–4,045 1,380.89 ± 
308.95

Ponds SC (µS/cm) AM (N-mM g-1 h-1)
Urea Mean

(2N-mM g-1 h-1)
TNM

(3N-mM g-1 h-1)
LCSAM

(nmol min-1 mg prot-1)

INKAAM
(µmol ATP mg 

prot-1 hour-1)

A 516 ± 3.90 1.31 ± 0.08 (10) 0.22 ± 0.06 (6) 1.42 ± 0.07 (6) 21 ± 5.45 (8) 2.28 ± 0.37 (10)

B 4335 ± 0.30 1.11 ± 0.09 (10) 0.32 ± 0.05 (10) 1.43 ± 0.11 (10) 21 ± 4.69 (7) 3.32 ± 0.33 (10)

C 1180 ± 1.00 1.50 ± 0.10 (10) 0.98 ± 0.13 (10) 2.47 ± 0.18 (10) 29 ± 6.90 (10) 2.32 ± 0.30 (10)

D 571 ± 12.10 0.95 ± 0.07 (10) 0.27 ± 0.07 (7) 1.19 ± 0.13 (7) 24 ± 4.96 (10) 3.11 ± 0.47 (10)

E 1010 ± 3.50 1.10 ± 0.14 (9) 0.32 ± 0.11 (4) 1.79 ± 0.11 (4) 22 ± 4.50 (8) 1.26 ± 0.32 (9)

F 967 ± 3.10 1.00 ± 0.38 (5) 1.70 ± 0.61 (4) 2.32 ± 0.68 (4) 26.40 ± 15.40 (3) 1.03 ± 0.49 (5)

G 3282 ± 38.00 1.11 ± 0.18 (10) 0.65 ± 0.13 (9) 1.77 ± 0.32 (9) 25 ± 7.17 (10) 2.46 ± 0.43 (10)

H 4020 ± 8.50 1.07 ± 0.16 (10) 0.67 ± 0.14 (9) 1.85 ± 0.22 (9) 25 ± 4.60 (10) 3.32 ± 0.51 (10)

All Ponds 1985 ± 12.41 1.15 ± 0.05 (74) 0.62 ± 0.06 (59) 1.78 ± 0.08 (59) 24 ± 2.08 (66) 2.49 ± 0.16 (74)

Table 2.  Group means for larval Gray Tiger Salamanders (Ambystoma tigrinum diaboli) from ponds in the Canadian Prairie Pothole 
Region of Canada (± standard error) for ammonia, urea, and total nitrogen excretion, liver citrate synthase and intestinal Na+/K+ ATPase 
activity.  Ponds are listed in alphabetical order, and not ascending order from lowest specific conductivity to highest specific conductivity.  
Sample sizes are listed in parentheses.  Abbreviations are SC = specific conductivity, AM = ammonia mean, TNM = total nitrogen mean, 
LCSAM = liver citrate synthase activity mean, INKAAM = intestine Na+/K+ ATPase activity mean.
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tissues in liquid nitrogen, and stored them at ˗80° C for 
future analyses.

Enzymatic assays.—We analyzed liver samples in 
larvae to determine citrate synthase activity, which is an 
indicator of metabolic rate.  We homogenized tissue on 
ice in imidazole buffer (50mml L-1; pH 7.4) by hand 
using a ground glass homogenizer.  We centrifuged 
samples for 2 min at 4000× g at 4° C and used the 
supernatant for enzymatic assays.  We measured citrate 
synthase in 50mmol-1 imidazole buffer, pH 8.0, 0.1 
mmol·L-1 DTNB (5,5’dithiobis 2-nitrobenzoic acid), 
0.3 mmol·L-1 acetyl CoA, 0.5 mmol·L-1 oxaloacetate 
(omitted for control).  We determined activity of citrate 
synthase at λ = 412 nm using DTNB (ε412 = 13.6; Singer 
et al. 1990).  We ran samples in duplicate and analyzed 
them using a microplate spectrophotometer with mean 
activities expressed per mg of protein.  We determined 
tissue homogenate protein concentration using the 
Bradford (1976) method.  If the gallbladder was pierced 
during removal of the liver, we did not determine citrate 
synthase activity.

To analyze Na+/K+ ATPase activity in larvae 
intestines, we homogenized tissue on ice in SEID buffer 
(150mM sucrose, 10mM EDTA, 50mM imidazole, and 
0.1% sodium deoxycholate; pH 7.5) by hand using a 
ground glass homogenizer.  We centrifuged samples for 
2 min at 4000× g at 4° C and used the supernatant in a 
Na+/K+ ATPase enzyme assay.  We determined Na+/K+ 

ATPase activity at 25° C using a NADH-linked assay 
(Gibbs and Somero 1989; McCormick 1993).  During 
this process ADP (formed during hydrolysis of ATP 
by ATPases) is linked to NADH using commercially 
prepared pyruvate kinase and lactate dehydrogenase.  
With this method, we monitored the disappearance of 
NADH (ε340=6.22) in the presence or absence of the 
Na+/K+ ATPase inhibitor ouabain, using a microplate 
spectrophotometer (Agilent Cary 60 UV-Vis, Agilent 
Technologies, Inc., Santa Clara, California, USA) at 340 
nm.  We analyzed samples in duplicate and mean Na+/K+ 

ATPase activity was expressed per mg of homogenate 
protein.  We determined tissue homogenate protein 
concentration using the Bradford (1976) method.

Statistical analysis.—We conducted Linear 
Regressions to examine the relationship between pond 
specific conductivities and each of larvae ammonia, 
urea and total nitrogen excretion, liver citrate synthase 
activity, and intestine Na+/K+ ATPase activity.  Pond-
specific conductivity and urea excretion, total nitrogen 
excretion, and liver citrate synthase activity did not 
meet normality assumptions (Shapiro Wilks specific 
conductivity and urea: W = 0.801, P < 0.0001; specific 
conductivity and total nitrogen: W = 0.898, P = 0.0001; 
specific conductivity and citrate synthase activity: W 

= 0.951, P = 0.011).  To meet normality assumptions, 
we log-transformed pond-specific conductivities, urea 
excretion, and total nitrogen excretion.  Log pond-
specific conductivity and log liver citrate synthase 
activity did not meet normality assumptions (W = 0.752, 
P < 0.0001), but did meet normality assumptions when 
citrate synthase activity was square root transformed.  
We recognized that all relationships may not be 
linear, and therefore we compared the fit of linear and 
polynomial relationships using a Likelihood-ratio 
Test and Akaike Information Criterion (AIC) model 
selection. We used a linear fit for log pond-specific 
conductivity and ammonia excretion as well as log 
pond-specific conductivity and square root liver citrate 
synthase activity (Likelihood-ratio Test result for log 
pond-specific conductivity and ammonia (P = 0.305) 
and square root citrate synthase activity (P = 0.611); 
AIC model selection for best ammonia model (linear: 
AIC weight of 0.52) and best square root citrate synthase 
activity model (linear: AIC weight of 0.63)).  Based on 
the results of the Likelihood-ratio Test and AIC model 
selection, we used a quadratic fit for log pond-specific 
conductivity and log-urea excretion, log-total nitrogen 
excretion and Na+/K+ ATPase activity data (Likelihood-
ratio Test result for log pond-specific conductivity and 
log-urea (P < 0.001), log-total nitrogen (P < 0.001), and 
Na+/K+ ATPase activity (P = 0.001); AIC model selection 
for best log-urea model (quadratic: AIC weight of 0.72), 
best log-total nitrogen model (quadratic: AIC weight of 
0.72) and best Na+/K+ ATPase activity model (quadratic: 
AIC weight of 0.7228)).  We determined significance 
using α = 0.05.  We used R version 3.6.0 to conduct all 
statistical analyses (R Developmental Core Team 2013, 
Vienna, Austria).

Results

Nitrogenous waste excretion.—The eight ponds we 
sampled ranged in specific conductivity from 516 to 
4,335 µS/cm (about 0 to 2.2 ppt salinity).  We did not 
find salamander larvae in any pond where salinity was > 
4,335 µS/cm.  All larvae excreted measurable amounts of 
ammonia over the 30-min sampling period.  The mean ± 
(standard error) larva ammonia production for 74 larvae 
was 1.15 ± 0.05 N-mM g-1 h-1 (range, 0.07-2.53 N-mM g-1 
h-1) across all ponds (Table 2).  There was no significant 
relationship between log pond-specific conductivity and 
larval A. t. diaboli ammonia excretion (F1,72 = 0.267, P 
= 0.607; Fig. 1).  Although all larvae excreted ammonia, 
79.7% of individuals excreted both ammonia and urea.  
Urea excretion was found in individuals of all sizes, 
with the two highest measured urea excretions produced 
by smaller individuals from intermediate salinity (967 
µS/cm).  Mean larva urea excretion rate for 59 larvae 
was 0.62 ± 0.06 2N-mM g-1 h-1 (range, 0.03-3.33 2N-
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relationship between log pond-specific conductivity and 
A. t. diaboli larva log total nitrogen excretion (F2,56 = 
10.19, P < 0.001; Fig. 1).  The highest calculated larvae 
total nitrogen waste excretions were from individuals in 
pond F (967 µS/cm) and C (1,180 µS/cm).  Pond C had 
the highest producer of ammonia, whereas Pond F had 
the highest producer of urea (Table 2).

Enzymatic assay activity.—Larvae from different 
ponds had similar mean citrate synthase activities.  Mean 
larva citrate synthase activity (66 larvae) was 24.78 
± 2.08 nmol min-1 mg prot-1 (range, 0.01-63.01 nmol 
min-1 mg prot-1) across all ponds (Table 2).  There was 
no significant relationship between log pond-specific 
conductivity and square root citrate synthase activity in 
livers of larval A. t. diaboli (F1,64 = 0.015, P = 0.902; Fig. 
2).  Although citrate synthase activity was > 50 nmol 
min-1 mg prot-1 (1,180 µS/cm) in several larvae from 
pond C (Table 2), the highest recorded citrate synthase 
activity came from a larva in pond G (3,282 µS/cm).

mM g-1 h-1) across all ponds (Table 2).  There was a 
significant quadratic relationship between log pond-
specific conductivity and A. t. diaboli larva log-urea 
excretion (F2,56 = 14.22, P < 0.0001; Fig. 1).  Of the 
total nitrogenous waste excretion (sum of ammonia and 
urea excretion) for all individuals sampled, ammonia 
represented 65.5% and urea represented 34.5%.  Mean 
larva total nitrogen excreted (59 larvae) was 1.78 ± 0.08 
3N-mM g-1 h-1 (range, 0.71-4.11 3N-mM g-1 h-1) across 
all ponds (Table 2).  There was a significant quadratic 

Figure 1.  The relationship between salinity, measured as log 
pond-specific conductivity, and nitrogen waste production in larval 
Gray Tiger Salamanders (Ambystoma tigrinum diaboli) from 
Canada.  (A) ammonia excretion, (B) urea excretion, (C) total 
nitrogen excretion.  Log pond-specific conductivity (P > 0.05; 
Linear Regression) did not predict larvae ammonia.  Log pond-
specific conductivity did predict larvae log urea excretion (P < 
0.05; Quadratic Regression) and larvae log total nitrogen excretion 
(P < 0.05; Quadratic Regression), as indicated by the solid line.

Figure 2.  The relationship between salinity, measured as log 
pond-specific conductivity, and enzymatic activity of larval Gray 
Tiger Salamanders (Ambystoma tigrinum diaboli) from Canada.  
(A) square root liver citrate synthase activity, (B) intestinal Na+/K+ 

ATPase activity.  Log pond-specific conductivity (P > 0.05; Linear 
Regression) did not predict larvae square root liver citrate synthase 
activity.  Log pond-specific conductivity (P < 0.05; Quadratic 
Regression) did predict larvae intestine Na+/K+ ATPase activity, as 
indicated by the solid line (P < 0.05).
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Mean larva intestinal Na+/K+ ATPase activity (74 
larvae) was 2.49 ± 0.16 µmol ATP mg prot-1 hour-1 (range, 
0-6.08 µmol ATP mg prot-1 hour-1) across all ponds (Table 
2).  We detected high intestine Na+/K+ ATPase activity 
in larvae from several ponds.  The highest activity (> 
5 µmol ATP mg prot-1 hour-1) was from individuals in 
ponds D (571 µS/cm), G (3,282 µS/cm) and H (4,021 
µS/cm).  There was a significant quadratic relationship 
between log pond-specific conductivity and A. t. diaboli 
larva intestine Na+/K+ ATPase activity (F2,71 = 8.194, P 
= 0.001; Fig. 2).

Discussion

Although larval Ambystoma tigrinum typically inhabit 
freshwater wetlands throughout most of the distribution 
of the species complex, some populations are known to 
inhabit saline environments, including those in saline 
ponds the Canadian Prairie Pothole Region, which 
range from 516 to 4,335 µS/cm.  Larvae are consistently 
exposed to elevated salinity in some ponds in the CPPR, 
and our data indicates a relationship between urea 
and total nitrogenous waste excretion of larvae and 
environmental salinity.  Mean urine urea concentrations 
in metamorphosed adult A. tigrinum exhibit a linear 
increase after a 10-d acclimation to hypersaline solutions 
(200 mOsm/l to 450 mOsm/l NaCl; Romspert and 
McClanahan 1981).  Unlike Romspert and McClanahan 
(1981), we observed a quadratic relationship between 
urea and total nitrogen and environmental salinity.  We 
predicted that larvae urea synthesis would increase with 
elevated pond salinity, which occurred at low salinities, 
but this trend did not continue as environmental salinity 
continued to rise.  Although we expected larvae urea 
levels to continuously increase with salinity, they may 
not have due to differences in larvae diet or reduced 
feeding rates between ponds.  If larvae feeding 
rates or protein content of larvae diet were lower in 
higher salinity ponds, we would expect to see lower 
urea production. Urea production increases in adult 
African Clawed Frogs (Xenopus laevis) acclimated to 
elevated salinity, and adult X. laevis can switch from an 
ammonotelic to a ureotelic strategy when salt-stressed 
(Wood et al. 1989).  Unlike Wood et al. (1989), we did 
not see a switch in nitrogenous waste strategy, from 
ammonotelism to ureotelism, in larvae A. t. diaboli.  A 
possible explanation is that the salinity in these naturally 
saline ponds is well below the hypersaline solutions 
(400 mOsmol) experimentally produced by Romspert 
and McClanahan (1981) and Wood et al. (1989).  
Although A. t. melanostictum can tolerate hypersaline 
environments (Gasser and Miller 1986), we did not find 
A. t. diaboli in any CPPR ponds with salinity > 4,335 
µS/cm.  Some ponds used in this study (3,282 µS/cm 
to 4,335 µS/cm) represent aquatic habitats that are only 

slightly saline, but they are elevated compared to the 
traditional freshwater habitats that A. t. diaboli larvae 
and other amphibian species typically inhabit.  Further 
examination of nitrogenous waste in A. t. diaboli larvae 
found in low saline and hypersaline ponds are necessary 
to observe amphibian osmotic responses occurring at 
these extremes, which provides a better overall depiction 
of physiological response to salinity at all levels. 

Most larval ammonotelic amphibians excrete more 
ammonia than urea (Nash and Fankhauser 1959; Moyes 
and Schulte 2008).  Our data on larvae inhabiting natural 
saline ponds support observations from laboratory 
studies that larval A. t. diaboli are capable of producing 
both ammonia and urea, and are not exclusively 
ammonotelic (Kirschner et al. 1971; Stiffler et al. 1980; 
Gasser and Miller 1986).  Ammonia comprises most of 
the nitrogenous excretion (65%), and urea represents 
about 35% of the total nitrogenous waste in larval A. t. 
diaboli in the Prairie Pothole Region of Canada.  Also, 
some individuals in our study did not excrete urea during 
the 30-min trial, which is likely due to a bolus of urine 
released during the holding period just prior to the initial 
collection.  Because urea excretion rates are needed to 
calculate total nitrogen excretion and % ammonia/
urea-N, we could not determine these values for those 
individuals.  Wood et al. (1989) show that urea comprises 
most of the nitrogenous waste in larvae A. tigrinum; 
however, larvae used by Wood et al. (1989) were larger 
(95 g) than individuals used in this study (3.1 ± 0.2 
g).  Milanovich and Hopton (2016) found that unlike 
most ammonotelic larvae, stream-dwelling Southern 
Two-lined Salamander (Eurycea cirrigera) larvae were 
ureotelic, in which urea comprised over 75% of their 
nitrogenous waste.  The presence of urea in larval urine 
indicates that these individuals are synthesizing urea 
either through ornithine-urea cycle enzymes or through 
the degradation of uric acid or arginine (Nash and 
Fankhauser 1959; Wright 1995).  Most adult amphibians 
produce urea through the ornithine-urea cycle (Balinsky 
et al. 1972; Wright 1995; Loong et al. 2002; Wright et 
al. 2004).  Although these physiological mechanisms 
have yet to be examined exclusively in larvae, larval 
A. t. diaboli in the CPPR could possess enzymes 
needed to synthesize urea through the ornithine-urea 
cycle.  Possessing urea synthesizing enzymes prior to 
metamorphosis and throughout development would be 
advantageous, because it would enable larvae to survive 
pond hypersalinity by osmoconforming.  Additional 
sampling of larval A. t. diaboli from the CPPR is needed 
to confirm the presence of ornithine-urea cycle enzymes.

Based on our observations, pond specific 
conductivity does not appear to have a significant effect 
on liver citrate synthase activity.  In contrast, Peña-
Villalobos et al. (2016) report a significant increase 
in adult female X. laevis liver citrate synthase activity 
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when acclimated to isotonic vs. hypertonic solutions.  
Larval A. t. diaboli inhabiting saline ponds in the 
CPPR express liver citrate synthase activity similar 
to that of larvae inhabiting freshwater wetlands.  We 
are uncertain why the citrate synthase activity is not 
elevated in larval A. t. diaboli inhabiting slightly saline 
ponds in the Prairie Pothole but suggest that the saline 
ponds we examined are less saline than the hypertonic 
solutions produced by Peña-Villalobos et al. (2016).  It 
is possible that the larvae living in CPPR slightly saline 
ponds do not require the same metabolic demand to 
maintain osmoregulation compared to larvae living in 
moderate or very saline environments.  Furthermore, the 
range of citrate synthase activity in Prairie Pothole A. t. 
diaboli larvae is large (0.01-63.01 nmol min-1 mg prot-

1).  Juvenile Axolotls (Ambystoma mexicanum) exhibit 
citrate synthase activity that varies with temperature 
and fasting (Irwin et al. 1999); therefore, some of the 
citrate synthase activity variation could be associated 
with variation in fasting among larvae: the time since a 
last meal cannot be determine in larvae collected from 
ponds.  Citrate synthase values in this study are similar 
to those measured in other fasted ectotherms, Arctic 
Char (Salvelinus alpinus; Bystriansky et al. 2007) and 
Spotted Lungfish (Protopterus dolloi; Frick et al. 2008).  
Adult anurans are typically used to examine citrate 
synthase activity in amphibians (Putnam and Bennett 
1983; Walsberg et al. 1986), rather than examining 
and comparing activity between adults and larvae.  
More data are needed, especially from other saline 
tolerant amphibian species, to help us understand how 
amphibians respond metabolically to elevated salinity.

Traditionally, intestinal Na+/K+ ATPase studies focus 
on changes in ion transport in euryhaline fish as they 
move between freshwater and saltwater environments 
(Jampol and Epstein 1970; Pillans et al. 2005; 
Chourasia et al. 2018; Vargas-Lagos et al. 2018), while 
saline tolerant amphibian species are largely ignored.  
Although similar studies have yet to be conducted on 
saline tolerant amphibians, non-amphibian studies 
provide potential insight into the changes that could 
occur in amphibian intestinal tissues, if they were to 
inhabit saline environments.  Jampol and Epstein (1970) 
report an increase in intestinal Na+/K+ ATPase activity 
in adult freshwater American Eels (Anguilla rostrata) 
acclimated to seawater; whereas, intestine Na+/K+ 

ATPase activity in juvenile Bull Sharks (Carcharhinus 
leucas) does not change between freshwater and marine 
acclimated individuals (Pillans et al. 2005).  Additionally, 
studies by Chourasia et al. (2018) indicate that intestinal 
Na+/K+ ATPase activity increases in adult Mozambique 
Tilapia (Oreochromis mossambicus), but activity does 
not change in adult Nile Tilapia (O. niloticus) when 
acclimated to seawater.  In freshwater juvenile Atlantic 
Salmon (Salmo salar), Na+/K+ ATPase activity is not 

significantly different between parr and smolt groups 
or in the hindgut and foregut of the intestines, but is 
significantly different in the midgut (Vargas-Lagos 
et al. 2018.  Based on these studies, intestinal Na+/
K+ ATPase activity can vary among environments 
and species.  In this study, we show that log pond-
specific conductivity has a significant quadratic effect 
on intestinal Na+/K+ ATPase activity of A. t. diaboli.  
Intestinal Na+/K+ ATPase activity is responsible for 
driving active ion uptake in the intestines, which leads 
to the passive uptake of water (Chourasia et al. 2018).  
At low salinities, these amphibians possibly maximize 
mechanisms for uptaking salts, which would explain the 
higher larval intestine Na+/K+ ATPase activity.  At higher 
salinities, larvae in the CPPR may begin losing water 
to the environment, so intestine Na+/K+ ATPase activity 
could elevate to maintain ion and water balance.  Unlike 
low and high salinity ponds, intermediate salinity ponds 
used in our study could represent an ideal salt and water 
balance environment that allows larvae intestine Na+/
K+ ATPase activity to subside.  The average intestinal 
Na+/K+ ATPase activity of 2.51 ± 0.2 µmol ATP mg prot-

1 hour-1 for larval A. t. diaboli in the CPPR is similar 
to that of terrestrial, adult, aestivating Green Striped 
Burrowing Frogs (Cyclorana alboguttata; Cramp et 
al. 2009).  Future investigations of amphibian saline 
tolerance should examine Na+/K+ ATPase activity.  Also, 
more data regarding larvae enzyme activity throughout 
development would be beneficial to determine, if and 
when, activity changes as larvae metamorphose into 
adult-form individuals (Burggren and Just 1992).  

We collected larvae from ponds ranging in specific 
conductivity from 516 to 4,335 µS/cm.  Our pond 
salinities were similar to the saline lakes in North Dakota 
and Montana of the U.S. (3,344–4,462 µS/cm), which 
contain larval tiger salamanders (Held and Peterka 1974; 
Hossack et al. 2018).  We did not find any evidence that 
A. t. diaboli larvae in the Prairie Potholes are stressed 
osmotically at any of the salinities tested; rather, they 
appeared normal and healthy.  Although we did not find 
A. t. diaboli in ponds with salinity over 4,500 µS/cm, 
larvae could inhabit hypersaline Prairie Pothole ponds.  
Therefore, to determine if A. t. diaboli can change their 
osmoconforming/osmoregulating capabilities, future 
studies should include hypersaline Prairie Pothole ponds 
and measure additional physiological indicators of 
osmotic stress (plasma ions).  Future studies should also 
consider using long term data collection (i.e., throughout 
development) to determine at what environmental 
osmolarity larvae switch strategies.

Ambystoma tigrinum and other amphibian species 
can survive elevated saline environments, but the 
longevity of this tolerance in naturally occurring habitats 
is still poorly understood.  Although this study focuses 
on the osmotic and metabolic effects of elevated salinity 
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in naturally saline inland ponds on A. t. diaboli larvae, 
more studies are needed to understand the physiological 
effects of elevated salinity on lesser-known saline 
tolerant amphibians.  Furthermore, these studies could 
aid in furthering our understanding of amphibian 
salinity tolerance, especially as environmental salinities 
increase due to the effects of climate change.  For 
example, amphibians living in inland saline ponds could 
be exposed to elevated salinity as the climate warms 
leading to increased water evaporation rates (Johnson 
et al. 2005; Werner et al. 2013); whereas amphibians 
living in coastal areas can be exposed to elevated 
salinity as sea-levels rise and frequency of storm surges 
and flooding occurs (Albecker and McCoy 2017).  
Therefore, the threat of increasing salinity due to climate 
change likely poses a challenge to all amphibians living 
in or near saline habitats (Hopkins and Brodie 2015), 
which may be more saline tolerant than we expect, and 
possibly better prepared for the uncertain future than 
what we predict.
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