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Abstract.—Agricultural ponds are exposed to many contaminants that can negatively affect breeding amphibians.  Despite the 
risks, such ponds are important amphibian breeding habitat if natural wetlands are scarce. We compared the survival of 
Xenopus laevis larvae reared in water from natural and constructed ponds.  Grazed ponds had higher nutrient levels (total 
nitrogen and total phosphorus) than natural ponds in 2000, but we observed no difference in nutrients between agricultural 
and natural ponds in 2001. All treatments had high survival rates (74-91%) in both years and we detected no significant 
differences in survival among treatments.  These results support previous research on the same test ponds; thus we conclude 
that certain constructed agricultural ponds in the Driftless Area ecoregion of the Upper Midwest may be suitable for anuran 
larval survival.  However, it is difficult to determine the biological significance of our findings, as indirect factors that could 
not be controlled for during this research, may influence the water chemistry of ponds in this region. 
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INTRODUCTION 

 
Amphibian population declines are a phenomenon with 

global significance (Houlahan et al. 2000; Blaustein and 
Kiesecker 2002; Blaustein and Johnson 2003; Lannoo 
2005).  Although no single explanation is known, several 
possible natural (e.g., parasitic infections or disease) and 
anthropogenic (e.g., toxicants and habitat destruction) exist 
(Johnson et al. 2002; Johnson and Sutherland 2004; Stuart 
et al. 2004; Green 2005; Pounds et al. 2006).  Exposure to 
environmental contaminants during critical life stages, 
such as the embryo and metamorph may be critical to 
amphibian survival (Fort et al. 1999; Relyea 2005).   

Agriculture may negatively affect amphibian populations 
by generating contaminants, such as fertilizers and 
pesticides (e.g., Kroening and Andrews 1997; Marco et al. 
1999; Rouse et al. 1999; Wijer et al. 2003; Hayes et al. 
2006).  Previous researchers reported fewer species of 
anurans near agricultural sites than in upstream or 
downstream areas (Bishop et al. 1997).  Despite the risks, 
agricultural ponds may be important breeding sites for 
amphibians in certain situations (Knutson et al. 2004).   

The Frog Embryo Teratogenesis Assay Xenopus 
(FETAX; American Society for Testing and Materials 
1998) is a standardized assay designed to assess the effects 
of water-based toxicants on amphibians (Burkhart et al. 
1998; Fort et al. 1999; but see Tietge et al. 2000).  We used 
the FETAX bioassay to test the hypothesis that acute 
survival of Xenopus laevis larvae would differ among 
water samples from agricultural and natural ponds in the 

upper Midwest.  If this is true, survivorship in water 
exposures from agricultural habitats (i.e., row crop or 
within grazed fields) will be lower than from other 
locations.  
 

METHODS 
 

We conducted standardized FETAX bioassays to 
evaluate the effect of pond water on the survival of 
Xenopus laevis larvae at the University of Wisconsin-La 
Crosse (American Society for Testing and Materials 1998).  
We purchased adult X. laevis from a biological supplier 
(Xenopus I, Inc., Dexter, Michigan, USA) and quarantined 
them for two months prior to water collection and FETAX 
analyses.  All X. laevis were kept in a flow-through well 
water system and cared for according to accepted methods 
(ASTM 1998).  Well water had an alkalinity of 300 ± 2 
mg/l (CaCO3), pH of 8.06 ± 0.01 and a hardness of 348 ± 
mg/l (CaCO3).   

 
Study area and pond selection.—We conducted our 

study in the Driftless Area ecoregion in southeastern 
Minnesota (Houston and Winona Counties).  We chose 
this state because it has many “hot spots” for amphibian 
malformations and mortality (Souder 2000; Rosenberry 
2001; Lannoo et al. 2003).  The ecoregion represents an 
area approximately 41,986 km2 that was not glaciated 
during the recent Wisconsin glacial period that ended 
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roughly 10,000 years ago (Fig. 1; McNab and Avers 1994; 
Albert 1995).  This ecoregion possesses large relief 
relative to the surrounding landscape.  The bedrock is 
composed mostly of limestone, sandstone and dolomite 
(Albert 1995).  Existing natural ponds are often associated 
with river or stream floodplains, while agricultural ponds 
used for livestock and erosion control account for most 
other lentic habitats in the area (Knutson et al. 2004).  The 
land surrounding most of these agricultural ponds consists 
largely of row crop, pasture, or grasslands (Albert 1995; 
Knutson et al. 2004).   

We randomly selected 40 test ponds using Geographical 
Information Systems (GIS) as in Knutson et al (2004).  We 
initially classified ponds as natural or constructed.  Natural 
ponds (n = 10) were designated based on their natural 
origin and/or association with rivers, streams, oxbow 
sloughs, etc.  We designated constructed ponds as those 
existing high in the watershed and likely created for the 
purposes of erosion control or as a water source for 
livestock (see Knutson et al. 2004).  We evenly distributed 
the remaining 30 constructed ponds among three treatment 
groups: agricultural ponds, grazed ponds, and ungrazed 
ponds.  We defined these groups based on the width of the 
grass buffer surrounding them and the adjacent land use 
determined on-site and via GIS analysis of aerial photos.  
Agricultural ponds were adjacent to row-cropped lands and 
surrounded by a grass buffer of < 30 m.  Grazed ponds 
were often used by domestic livestock (primarily beef and 
dairy cattle), and ungrazed ponds were surrounded by a 
grass buffer of > 30 m.  We derived buffer strip widths 
from riparian buffer standards recommended by the United 
States Department of Agriculture (United States 
Department of Agriculture, Natural Resources 
Conservation Service 1999).  We did not identify many 
natural ponds so were unable to control for land uses 
surrounding them.  Land use around natural ponds 

occasionally included a small amount of agriculture (< 
25%) that existed beyond the 30 m buffer.    

 
Water collection.—Pond water samples were 

composites, comprised of water collected at mid-depth, 1 
m from shoreline at four equidistant locations around 
pond perimeter and mixed.  All glassware used for 
collection and storage of samples were washed with soap 
and tap water, and rinsed with reverse osmosis deionized 
water and pesticide grade acetone (Fisher Scientific, Inc., 
Waltham, MA, USA).  All water samples were labeled 
and immediately placed on ice or refrigerated until 
needed for analyses.   

Due to limited resources, we were only able to collect 
and analyze water from a randomly selected sub-sample 
of the 40 available study ponds.  In 2000, we collected 
water samples from 25 study ponds (five natural, 10 row 
crop, five grazed, and five ungrazed).  We eliminated the 
five grazed and five ungrazed ponds and added five 
additional natural ponds to our analysis in 2001.  The 
agricultural and natural ponds sampled in 2000 were also 

sampled in 2001.  We collected water samples for FETAX 
and nutrient analyses every two weeks from April 15-July 
20 (n = 6 sampling periods/yr).   

The time frame of the selected sampling regime 
corresponded with the egg and larval developmental period 
of several anuran species present in test ponds (e.g., Bufo 
americanus, Pseudacris crucifer, Pseudacris triseriata, 
Rana pipiens, Rana sylvatica; Vogt 1981).  This also 
helped ensure that test subjects were exposed to potential 
changes in the water quality of test ponds occurring over 
time.  Due to travel time required to begin a single 
sampling regime (~ 1 h) and to ensure use of the resources 
necessary to collect water, sampling trips were pre-
determined and we could not control for the effects that 
rain events had on water quality in test ponds.   

 
Laboratory bioassay.—On days that water samples were 

collected, two breeding pairs of X. laevis were placed in 
aquaria with FETAX solution.  At this time, breeding was 
induced with hormone injections as described in ASTM 
(1998).  Within 24 h of water collection, we harvested 
embryos and initiated FETAX assays via standard methods 
(ASTM 1998; but see more efficient methods recently 
published in McCallum and Rayburn 2006).   

During 2000 and 2001, FETAX bioassays (96 h acute 
bioassays) were conducted on each pond a total of six 
times per year.  Test ponds were of four different 
“treatment” types in 2000 and two different “treatment” 
types in 2001.  Bioassays consisted of two 60 mm diameter 
petri dishes (Fisher Scientific, Inc., Pittsburgh, PA, USA) 
per pond, each containing 25 embryos cultured in 10 ml of 
test solution (i.e., pond water) for 96 h.  Each bioassay also 
contained a double control, with embryos housed in 10 ml 
of sham solution (6-aminonicotinamide; Fisher Scientific, 
Inc., Pittsburgh, PA, USA) and embryos housed in 10 ml 

 
FIGURE 1. The driftless area ecoregion (outlined in yellow) of the upper 
Midwestern United States. 
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of negative control solution (FETAX solution) as 
described in ASTM (1998).  During assays, petri 
dishes were held in an environmental chamber at 
25-28 C, with a light regimen of 12 h light: 12 h 
dark for a total of 96 h.  We recorded embryo 
survival at the end of each assay.   

 
Nutrient analyses.—We conducted nutrient 

analyses on water samples within 30 d of 
collection at the Upper Midwest Environmental 
Sciences Center (UMESC) Water Quality 
Laboratory, La Crosse, Wisconsin, as described in 
Knutson et al. (2004).  We analyzed unfiltered 
samples from 2000 for total nitrogen and total 
phosphorus, and analyzed unfiltered water samples 
from 2001 for total nitrogen, total phosphorus, 
ammonia and nitrate following standard methods 
after digestion (persulfate method; APHA, 1998).  

 
Statistical analysis.—We used a repeated-

measures analysis of variance to determine 
differences in survival of Xenopus laevis larvae 
cultured in water from different pond types 
(ungrazed, grazed, agricultural and natural in 2000; 
agricultural and natural in 2001) (ANOVA; Zar 
1984).  A power analysis estimated an 85% 
probability of detecting a 20% difference in the 
survival of X. laevis between agricultural and 
natural ponds with a Type I error (α) of 0.05 for the 
FETAX bioassays (Zar 1984).  We used the statistical 
software SPSS 11.5 to conduct all statistical analyses 
(Chicago, IL, USA) 

We rank transformed data prior to analysis and 
multivariate analysis of variance (MANOVA) was used to 
determine if there was a significant difference in water 
quality between natural and constructed ponds in both 
years.  We chose MANOVA because it simultaneously 
considers the effects of independent variables (e.g., pond 
type) on several dependent variables (e.g., phosphorus, 
total nitrogen, etc.; Zar 1984).  We performed a MANOVA 
on each set of data because we measured different ponds 
and parameters in 2000 and 2001.  If statistically 
significant, we followed the MANOVA with a univariate 
analysis of variance to determine which of the water 
quality parameters differed among pond types.  We 
performed a Bonferroni test for post hoc analysis of the 
water quality data to assess differences in nutrient 
concentrations among the four types of ponds (Zar 1984).  
We used Spearman’s rank correlation to determine if acute 
Xenopus survival during FETAX was correlated with the 
rank of each of the nutrient values in 2000 and 2001 (Zar 
1984). 

RESULTS 
 

Water quality varied among the pond types (Table 1).  In 
2000, we found significant differences in water quality 

among the four ponds (F = 2.367, df = 40, P = 0.047, 
Wilks’ lambda; Table 1) with grazed ponds having higher 
total nitrogen (P = 0.045) and total phosphorus (P = 0.023) 
than natural ponds.  In 2001, we detected no significant 
difference in water quality between agricultural and natural 
ponds (F = 2.260, df = 14, P = 0.115, Wilks’ lambda; 
Table 2).   

In 2000, spearman’s rank correlation determined that 
Xenopus survival was negatively correlated with total 
nitrogen (R = -0.53, P = 0.049) and also negatively 
correlated with total phosphorus (R = -0.57, P = 0.030).  In 
2001, Xenopus survival was negatively correlated with 
total phosphorus (R = -0.552, P = 0.014).  In 2000, there 
was no detectable difference between the mean acute 
survival of Xenopus laevis larvae cultured in water from 
ponds in grazed pastures (78%), agricultural fields (78%), 
ungrazed fields (91%) and natural settings (91%; F3,22  = 
2.52, P = 0.08).  There was also no difference in survival 
of X. laevis in water from artificially constructed ponds 
only (i.e., ponds in ungrazed fields, grazed fields and 
agricultural fields; F2,17  = 3.28, P = 0.06).  In 2001, mean 
acute survival of Xenopus laevis cultured in water from 
agricultural fields (74%) did not differ from that of natural 
wetlands (81%; F1,17 = 0.46, P = 0.51).  Response of X. 
laevis to positive and negative control solutions in all 
bioassays was within acceptable limits (ASTM 1998).     
 
 
 

TABLE 1. Characteristics of ponds where water was collected for FETAX assays, 
Houston and Winona Counties, Minnesota, USA in 2000. 

Pond name/type 

Dominant land 
uses within 2500 

m 

Pond 
area 
(ha) 

Mean 
max 

depth (m) 

Mean total
nitrogen 

(mg/l) 

Mean total
phosphorus 

(mg/l) 
Alt/ungrazed Forest 0.4 2.7 0.57 1.10 
Uti/ungrazed Grassland 0.2 0.7 0.19 1.29 
StCh/ungrazed Corn/soybean 0.4 2.5 0.07 3.99 
She/ungrazed Corn/soybean 0.0 1.3 0.22 1.14 
Eit/ungrazed Forest/grassland 0.1 1.5 0.13 1.28 
Alt/grazed Corn/soybean 0.3 2.8 0.78 2.60 
Uti/grazed Grassland 0.0 0.9 0.20 1.54 
StCh/grazed Grassland 0.1 1.1 3.56 5.62 
She/grazed Forest 0.2 1.8 0.43 3.26 
Eit/grazed Grassland 0.2 0.6 1.66 4.95 
Alt/agriculture Corn 0.5 1.4 0.82 2.85 
Uti/agriculture Corn/soybean 0.1 1.7 0.25 1.46 
Lew/agriculture Corn/soybean 0.3 1.1 0.44 2.07 
StCh/agriculture Corn 0.4 0.7 0.36 1.38 
Hou/agriculture Corn 0.5 1.6 0.30 1.07 
Mou/agriculture Corn/soybean 0.1 1.1 0.15 2.77 
She/agriculture Corn/soybean 0.1 0.7 0.21 1.07 
Cal/agriculture Corn/soybean 0.1 0.6 14.76 16.69 
Bro/agriculture Corn 0.1 1.3 0.08 2.42 
Eit/agriculture Corn/soybean 0.2 0.7 0.18 1.22 
Alt/natural Forest 5.6 0.7 0.15 0.76 
Uti/natural Forest 0.3 0.8 0.28 1.01 
StCh/natural Grassland 1.6 1.1 0.04 4.80 
Cal/natural Forest 0.3 0.4 0.16 0.64 
Eit/natural Forest 0.8 0.8 0.06 0.74 
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DISCUSSION 
 

Grazed and ungrazed study ponds in 2000 had similar 
survival as agricultural and natural ponds, respectively, 
which resulted in their elimination in 2001.  Our 
expectation that larval survival would be lower in 
constructed or agricultural ponds was incorrect; we reject 
the hypothesis that larval survival differs based on pond 
type.  Our belief that nutrient levels would be lower in 
artificial ponds was correct in 2000, but incorrect in 2001. 

  Based on past research (e.g., Jofre and Karasov 1999) 
the ammonia levels we detected were high enough to affect 
acute survival.  Conversely, most nitrate concentrations 
were too low to have an effect (Rouse et al. 1999).  de 
Wijer et al. (2003) report that ammonium nitrate reduced 
survival of Rana temporaria tadpoles, but increased nitrate 
levels only indirectly enhanced mass at metamorphosis in 
R. temporaria and Bufo bufo.  The low intensity of 
agricultural practices in our study region may partially 
explain the comparably low levels of nutrients detected in 
most test ponds and why acute larval survival was not 
significantly affected (Stamer et al. 1998; Hunst and 
Howse 2001; Sands and Parker 2001).  

Several factors must be considered in regards to this 
research project: (1) Xenopus laevis is morphologically 
and physiologically different from native amphibians, 
although our results provide some insight into the pond 
types that may be at risk and require future research; (2) 
research on the same ponds found that those surrounded by 
grazed habitat and subject to direct disturbance by 
livestock contain fewer amphibians (Knutson et al. 2004); 
and (3) our study focused mostly on the direct effects that 
agricultural ponds may have on acute larval survival only.  
Although not analyzed during this research, indirect effects 
(such as those determined by Hayes et al. 2002 and 

Tavera-Mendoza et al. 2002, or the frequency and intensity 
of livestock grazing, frequency of pesticide application to 
land surrounding agricultural ponds, pesticide products 
used by land-owners) associated with agricultural ponds 
should not be ignored.  In addition, chronic and behavioral 
studies using FETAX on water from these ponds is also 
worth pursuing, should time and resources allow. 

Despite the potential toxicological risks present in 
agricultural settings, mean survival of larvae at 96 h was 
high for all pond types.  The complex topography and 
erosive soils typical of the Driftless Area Ecoregion, which 
may result in less intensive agriculture associated with test 
ponds, must be considered.  Agriculture could have a 
lesser effect on developing anuran larvae in this region 
compared to other areas where agricultural practices may 
be more intense.  Further comparative research on this 
topic is necessary.  The biological significance of these 
results, when taken alone, is difficult to determine.  It is 
when they are considered concurrently with other research 
conducted on the same ponds (Knutson et al. 2004; Kapfer 
et al. in press), that a slightly clearer picture presents itself: 
should natural ponds be unavailable, certain agricultural 
ponds in this region are used by native amphibians for 
breeding and may be suitable for amphibian adult and 
larval survival.  
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