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Abstract.—The chytridiomycete fungus Batrachochytrium dendrobatidis, causative pathogen of the disease amphibian 
chytridiomycosis, sometimes occurs on environmental substrates and can grow in vitro on reptile skin. This suggests 
that susceptible reptiles associated with water bodies may act as both reservoirs of infection and vectors for spread of 
the disease.  We sampled the semi-aquatic Eastern Water Dragon, Physignathus lesueurii, associated with streams 
and known infected frog populations for B. dendrobatidis.  None of the 15 juvenile dragons returned positive results 
for the pathogen by qPCR assay.  This suggests P. lesueurii are not important alternate hosts for B. dendrobatidis and 
do not act as important reservoirs or vectors of B. dendrobatidis. 
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INTRODUCTION 
 

The chytridiomycete fungus Batrachochytrium 
dendrobatidis (Longcore et al. 1999) is the causative 
pathogen of the disease amphibian chytridiomycosis, 
responsible for the declines of amphibians worldwide.  
The disease has emerged due to anthropogenic and 
natural spread of B. dendrobatidis into naive 
amphibian populations (Skerratt et al. 2007).  
Transmission of the disease among amphibians has 
been demonstrated experimentally to occur via release 
of zoospores of B. dendrobatidis from infected 
amphibians into the environment and subsequent 
infection of uninfected amphibians by these zoospores 
or reinfection of the same individual (Berger et al. 
1998; Berger et al. 2004; Rachowicz and Vredenburg 
2004; Carey et al. 2006; Rachowicz and Briggs 2007).  
Empirical support of this transmission method in the 
wild has been provided by detection of B. 
dendrobatidis DNA in environmental substrates such 
as pond water (Kirshtein et al. 2007; Walker et al. 
2007) and on the surface of streamside rocks or 
boulders (Lips et al. 2006), with which stream-
associated amphibians are likely to have contact. 

To date, alternative hosts of B. dendrobatidis have 
not been demonstrated (Rowley et al. 2007); however, 
cultures of B. dendrobatidis can grow on snake skin 
(Piotrowski et al. 2004; Bryan Windmiller and Alison 
Robbins unpubl. data), suggesting that susceptible 
reptiles associated with water bodies may act as both 
reservoirs of infection and vectors for spread of the 
disease.  The Eastern Water Dragon, Physignathus 
lesueurii (Gray 1831), is a semi-aquatic, arboreal 
lizard that perches on emergent rocks and tree 
branches overhanging creeks and rivers.  When 
disturbed, P. lesueurii drops into the water to escape.  
Its diet includes frogs (Cogger 1994).  The adults are 

fairly sedentary, moving an average of 76 m between 
captures in one study (Thompson 1993).  We surveyed 
P. lesueurii along streams with permanent anuran 
populations known to be infected with B. 
dendrobatidis to determine the likelihood of this 
reptile acting as an important alternate host for the 
pathogen.  We regarded that water dragons would be 
an important alternate host if infection prevalences in 
water dragons were similar to those of anurans in the 
same locations. 

 
MATERIALS AND METHODS 

 
We captured P. lesueurii after chance encounters 

during surveys of stream-associated anurans in Murray 
Upper National Park (18º11′S, 145º52′E, elevation 
250 m) in the wet topics of Australia.  Dragons were 
caught by gloved hand and the ventral surface and 
inguinal folds swabbed with an MW100 tubed 
dryswab (Medical Wire and Equipment Co [Bath] Ltd, 
Corsham, Wiltshire, England).  We wore latex gloves, 
which were changed between animals to prevent 
transfer of pathogens.  We labelled swabs and stored 
them at < 10ºC in the field for up to five days, prior to 
transport to James Cook University and storage at -
80ºC until processing. 

We used a real-time TaqMan® (Applied Biosystems, 
Scoresby, Victoria, Australia) PCR assay to detect B. 
dendrobatidis.  The assay followed the protocol 
described by Boyle et al. (2004) with the following 
modifications.  We performed the analysis on the 
Rotor-Gene™ 6000 (Corbett Research, Mortlake, New 
South Wales, Australia) using Gene-Disc 100 tubes.  
A 15 μL reaction volume was produced by loading 10 
μL of PCR reaction mix and 5 μL of the diluted 
sample extract, standard, diluted negative control, or 
water into Gene-Disc tubes with a CAS-1200™ 
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pipetting robot (Corbett Robotics, Mortlake, New 
South Wales, Australia).  We diluted the sample 
extract and negative control one in 10.  We performed 
triplicate analyses for each sample, negative control 
and no-template-control, and quadruplicate analyses 
for each standard (100, 10, 1, 0.1 zoospore 
equivalents).  The master mix included the addition of 
400 ng/μL of bovine serum albumin (BSA) in order to 
reduce inhibition of PCR by substances such as humic 
acids and other inhibitors (Kreader 1996; Garland et 
al. 2009). 

To test for false negatives due to inhibition of the 
PCR assay, we performed a repeat triplicate analysis 
incorporating the TaqMan® Exogenous internal 
positive control, IPC (0.6x Exo IPC Mix, 0.6x Exo 
IPC DNA; Applied Biosystems, Scoresby, Victoria, 
Australia) into the assay (Hyatt et al. 2007).  We also 
made an extra one in 100 dilution of the extract for 
subsequent reanalysis when Ct differentials between 
the sample and the negative control were greater than 
three.  Inhibition would be indicated by Ct values 
significantly higher than those obtained for the 
negative control, so a one-sample t-test (α = 0.05) was 
performed to compare the sample Ct values.  We 
calculated the exact confidence interval for the 
proportion of infected water dragons, with the 
assumption that the proportion infected could be any 
number in the range of zero to one, with all 
possibilities being equally likely. 

 
RESULTS 

 
We caught 15 juvenile P. lesueurii (snout vent 

length < 12 cm) at Murray Upper National Park in 
October 2006 (n = 8), December 2006 (n = 2), and 
October 2007 (n = 5).  Captures were limited to 
opportunistic encounters during routine monitoring of 
stream-associated anurans.  We did not encounter 
adult water dragons on the stream during frog surveys.  
None of the swabs of these dragons returned positive 

results for B. dendrobatidis by qPCR assay in any of 
the triplicate wells.  These results were not false 
negatives, as the PCR assay was not inhibited.  The Ct 
value for the swabs from P. lesueurii analysed by PCR 
assay did not vary significantly from the Ct value of 
the negative control (t = 0.616, df = 12, P = 0.556; 
Table 1).  The qPCR assay for one swab was repeated 
in an additional run due to a software analysis failure.  
The assay for an additional swab was inhibited at the 
standard concentration, but inhibition was overcome 
when it was further diluted to one in 100.  The Ct 
values for both of the above swabs were lower than 
that of the negative control (Table 1) and therefore 
inhibition did not occur.  The exact 95% shortest 
confidence interval for this 0% estimate of prevalence 
of B. dendrobatidis in water dragons is 0–17%.  The 
prevalence of infection of Batrachochytrium 
dendrobatidis in stream-associated anurans in 2006 
and 2007 differed significantly (χ2

c = 3.91, df = 1, P = 
0.048; Table 2) but not the intensity of infection (t = 
1.031, df = 71, P = 0.377; Table 2). 

 
DISCUSSION 

 
Juvenile P. lesueurii were captured in periods of 

high prevalence of B. dendrobatidis among stream 
dwelling frogs (Table 2), indicating that the chytrid 
fungus was abundant in aquatic habitats.  However, all 
P. lesueurii were negative for B. dendrobatidis by 
qPCR assay.  Although the upper 95% confidence 
limit for the 0% prevalence estimate of B. 
dendrobatidis in water dragons was 17% this was 
much lower than the mean prevalence in frogs of 46% 
and the lower 95% confidence limit of 36% for frogs 
at similar times of the year.  Therefore, we concluded 
that water dragons are not important alternate hosts 
and ceased sampling.  However, we cannot rule out 
low infection prevalences in water dragons.  It is 
unlikely that innate susceptibility to infection varies 
greatly in different populations of water dragons as 

TABLE 1.  Results of the PCR assay performed on swabs from Physignathus lesueurii.  Replicate Ct values (n = 3) of the swabs did not 
vary significantly from the Ct value of the negative control (Mean ± Standard Deviation [SD] = 27.43 ± 0.71). 
 

 
Dragon # 

 
Replicate Ct Value 

 
Replicate Ct SD 

 
Notes 

 
1 

 
27.15 

 
0.29 

Ct value of sample statistically compared with Ct value of 
negative control 

2 28.21 0.75 
3 27.25 0.76 
4 28.26 0.24 
5 28.18 0.26 
6 27.18 0.07 
8 27.49 0.52 
9 26.81 0.27 

10 26.93 0.61 
11 28.69 0.28 
13 27.08 0.39 
14 27.18 0.10 
15 27.49 0.87 
7 26.87 0.45 Initial software analysis failure, sample repeated in second PCR 

assay. 
12 26.56 0.28 One replicate initially inhibited, PCR assay repeated at 1 in 100 

dilution 
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this does not occur within naive species of amphibians 
(McDonald et al. 2005).  Determining if low 
prevalence of infection may occur in water dragons 
would require much larger sample sizes, which are 
difficult to obtain.  A sample size of 298 would be 
required to be confident that the prevalence of B. 
dendrobatidis in water dragons was < 1%.  
Experimental infections to assess host susceptibility 
would be more cost efficient than pursuing large and 
expensive surveys.  However, the cost versus benefits 
of experimental infection trials of water dragons 
indicates that it is not currently warranted given the 
other immediate priorities for research on B. 
dendrobatidis. 

As B. dendrobatidis is capable of utilizing reptilian 
skin as a nutrient source (Piotrowski et al. 2004; Bryan 
Windmiller and Alison Robbins, unpubl. data), our 
results suggest that the preferred habitat of P. lesueurii 
along the vegetated edges of water bodies means it 
may occasionally contact contaminated substrates; 
however, its biology probably does not allow 
progression to infection.  Lack of infection is probably 
because B. dendrobatidis is sensitive to desiccation 
(Johnson et al. 2003), and prevalence of Bd-infection 
among forest-dwelling frogs is far less than among 
stream-associated frogs (Kriger and Hero 2007).  
Adult P. lesueurii sometimes sleep with all but their 
nostrils submerged in water, but like most terrestrial 
reptiles, they are potentially a ‘dry’ lizard.  During 
diurnal activity, they only enter water to escape a 
potential predator or briefly to cross water (Thompson 
1993).  Alternatively, live P. lesueurii skin simply may 
be unsuitable for B. dendrobatidis infection. 
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Month, Year 

 
# Anurans Sampled 

 
Prevalence of Bd 

 
        Intensity of Infection 

 
Oct.-Dec. 2006 

 
113 
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343, 1–4232 

Oct. 2007 57 54% 213, 1–23771 
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