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Abstract.—We used microsatellite DNA markers to identify the extent to which multiple paternity within litters occurs 
among species of New World natricine snakes.  We selected seven species to represent the three major clades of 
Natricinae and all three subclades of the gartersnake clade.  Microsatellite DNA genotyping of dams and litters confirmed 
multiple paternity within litters of six species, including Thamnophis radix, T. sauritus, Storeria dekayi, S. 
occipitomaculata, Nerodia rhombifer, and Regina septemvittata.  Multiple paternity was not evident in one litter of nine 
Thamnophis melanogaster.  Together with published data documenting multiple paternity in T. bulteri, T. elegans, T. 
sirtalis, and N. sipedon, these results confirm the phylogenetically widespread occurrence of multiple paternity among 
New World natricines, emphasizing the need to consider phylogenetic (historical) explanations when analyzing snake 
mating systems. 
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INTRODUCTION 
 
Molecular genetic techniques have revolutionized the 

analysis of mating systems, frequently revealing the 
occurrence of promiscuity or polygynandry (multiple 
mating by both males and females) in species previously 
thought to be monogamous or polygynous (Avise et al. 
2002; Griffith et al. 2002; Westneat and Stewart 2003; 
Simmons 2005; Eccard and Wolf 2009).  Among 
reptiles, such analyses have mostly focused on the 
occurrence of multiple paternity within clutches of eggs 
or litters of young produced by individual females and 
have demonstrated its prevalence among turtles, lizards, 
and snakes (Uller and Olsson 2008; Voris et al. 2008; 
Refsnider 2009).  As a result, reptilian examples have 
been used to evaluate adaptive explanations for 
polygynandry in general and multiple paternity in 
particular, including turtles (Pearse et al. 2002), lizards 
(Olsson and Madsen 2001; Calsbeek et al. 2007; LaDage 
et al. 2008), and snakes (Prosser et al. 2002; Blouin-
Demers et al. 2005; Kissner et al. 2005; Madsen et al. 
2005; Dubey et al. 2009), although with somewhat 
mixed results (see contrasting viewpoints in Uller and 
Olsson 2008 vs. Madsen 2008).  Its widespread 
occurrence has led some authors to suggest the need to 
consider multiple paternity in a phylogenetic context 
(e.g., Voris et al. 2008), but aside from the suggestion by 
Rivas and Burghardt (2005) that polyandry, not 
polygyny, may be ancestral in snakes, phylogeny has 
largely been ignored in interpreting reptilian patterns of 
multiple paternity. 

In this paper, we examine multiple paternity within 
New World natricine snakes in an effort to understand 
whether multiple paternity is phylogenetically 
widespread and conserved or evolutionarily labile within 
this group.  New World natricines consist of 
approximately 55 species of live-bearing North 
American snakes within nine genera (Thamnophis, 
Nerodia, Regina, Virginia, Storeria, Clonophis, 
Seminatrix, Tropidoclonion, Adelophis).  New World 
natricines are a useful focal group for a number of 
reasons.  Their phylogenetic relationships are well 
resolved (Alfaro and Arnold 2001; de Queiroz et al. 
2002).  Also, their reproductive behavior has been well 
characterized at least in some species and includes male 
placement of copulatory plugs within the female’s cloaca 
(Devine 1975; Devine 1977; Crews 1980; Rossman et al. 
1996; Shine et al. 2000a, b), pheromonal signaling of 
prior mating (Ross and Crews 1977), and multiple 
paternity (first demonstrated using molecular markers by 
Schwartz, et al. 1989, reviewed by Voris et al. 2008).  In 
addition females store sperm within the vagina and 
infundibulum of the oviducts for weeks to months before 
fertilization (Blanchard and Blanchard 1941; Halpert et 
al. 1982; Gist and Jones 1987; Andren et al. 1997; Sever 
and Ryan 1999) creating a situation where 
postcopulatory male intrasexual selection (sperm 
competit ion) and cryptic female choice may be 
important determinants of male reproductive success 
(Birkhead and Parker 1997; Birkhead and Møller 1998; 
Birkhead 2000; Olsson and Madsen 1998; Arnqvist and 
Rowe 2005).  Finally they have been frequent subjects
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for quantitative genetic analysis (reviewed by Brodie and 
Garland 1993), analyses which are often predicated on 
the assumption that litters are singly-sired and thus 
represent sets of full-sibs (King et al. 2001).  

To assess the extent of multiple paternity within New 
World natricines, we generated microsatellite DNA 
genotypes for dams and offspring of seven previously 
untested species.  Storeria occipitomaculata and S. 
dekayi were chosen to represent the semifossorial clade, 
Thamnophis melanogaster, T. radix, and T. sauritus the 
gartersnake clade (Mexican, widespread, and ribbon and 
common gartersnake subclades, respectively), and 
Nerodia rhombifer and Regina septemvittata the 
watersnake clade.  When combined with the four species 
in which multiple paternity is already known (T. sirtalis 
- ribbon and common gartersnake subclade, T. butleri 
and T. elegans - widespread subclade, N. sipedon - 
watersnake clade), this study brings the total number of 
species tested to 11 with all three clades and two of three 
subclades represented by two or more species (only the 
Mexican subclade is represented by a single species). 

 
MATERIALS AND METHODS 

 
Tissue sampling.—We collected gravid female 

Thamnophis radix and S. dekayi from DeKalb County, 
Illinois, and N. rhombifer from Jackson County, Illinois; 
T. sauritus and S. occipitomaculata were collected from 
Charlevoix County, Michigan.  We maintained each 
snake individually in a terrarium with food and water ad 
libitum on a 12:12 light/dark cycle until parturition.  We 
collected tissue samples (blood or tail tips) immediately 
after parturition to ensure dam identification.  In total, 
we sampled seven dams and 128 offspring.  We released 
snakes at their respective capture sites following tissue 
collection.  Colleagues provided dam and offspring 
tissues following parturition from T. melanogaster from 
San Pedro Tlatizapan, Mexico and R. septemvittata from 
Ottawa County, Ohio. 

 
Molecular techniques.—We extracted total genomic 

DNA from blood, frozen tail tips, or ethanol-preserved 
tail tips using the DNeasy Tissue Kit (QIAGEN), 
ethanol precipitation, or chloroform extraction 
(Wusterbarth 2009).  The concentration of DNA in the 
extracts was determined spectrophotometrically and 
subsequently diluted to 10ng/µl for amplification.  We 
amplified six microsatellite DNA loci using primers for 
loci cloned from T. sirtalis (2Ts and 3Ts; Garner et al. 
2002) and N. sipedon (Nesi2, Nesi3, Nesi9, and Nesi10; 
Prosser et al. 1999).  Each 10.0 l amplificationreaction 
included 1.0 l 25 mM Promega MgCl2, 1.0 l Promega 
10X buffer, 0.4 l 10 mM Promega dNTPs, 1.0 l 10 
ng/µl template, 1.0 l 10ng/µl forward primer and 1.0 l 
10 ng/µl reverse primer with fluorescent tags 

(Invitrogen), and 0.1 l 5 units/l Promega Taq 
polymerase.  Reactions were incubated at 94 C for 4 
min, cycled 35 times through 94 C for 30 s, 54 C for 30 
s, 72 C for 60 s, with a final elongation step at 72 C for 5 
min.  We genotyped amplification products using a 
CEQ 8000 Genetic Analysis System (Beckman 
Coulter, Fullerton, California, USA).  After identifying 
maternal alleles in offspring genotypes, we counted the 
number of paternal alleles per litter.  The presence of 
more than two paternal alleles (the maximum when a 
sire is heterozygous) within any single litter indicated 
multiple paternity. 

 
RESULTS 

 
Primers for microsatellite DNA loci cross-amplified 

well despite their having been cloned from other species. 
Alleles amplified with Nesi2, Nesi3, Nesi9 and Nesi10 
primers had lengths within ten base pairs (bp) of the 
allele length ranges observed by Prosser et al. (1999).  
Allele lengths for the 2Ts locus, however, were at least 
60 bp shorter than those reported by Garner (1998).  
Similarly, most alleles detected at the 3Ts locus were 
shorter by ca. 80-140 bp than those reported by Garner 
(1998).  To verify proper gene amplification, the 3Ts 
PCR product for T. radix was sequenced and the 
published microsatellite repeat (Garner et al. 2002) was 
present.  Although we did not conduct formal tests for 
genotyping error rates, retyping a subset of individuals 
during PCR optimization gave identical results. 

Microsatellite DNA genotyping of dams and litters 
revealed three or more paternal alleles among offspring, 
confirming multiple paternity within litters of six 
species, including T. radix, T. sauritus, S. dekayi, S. 
occipitomaculata, N. rhombifer, and R. septemvittata 
(Table 1).  Given the presence of three to five paternal 
alleles within these litters, each was sired by a minimum 
of two to three males (Table 1).  In cases where more 
than one microsatellite DNA locus was analyzed (T. 
sauritus, S. dekayi), multiple paternity was confirmed by 
both loci (see Table 1).  Multiple paternity was not 
evident in a single litter of nine T. melanogaster.  At 
both the 3Ts locus and the Nesi10 locus, we detected just 
two paternal alleles (Table 1).  When plotted on the 
phylogeny of New World natricines, these results 
confirm the widespread occurrence of multiple paternity 
across divergent clades (Fig. 1). 

 
DISCUSSION 

 
Multiple paternity has now been documented in 10 of 

11 New World natricine snake species tested.  
Furthermore, multiple paternity is phylogenetically 
widespread within New World natricines, occurring in 
multiple species within the watersnake, gartersnake, and
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TABLE 1.  Microsatellite DNA genotypes of dams and offspring from seven New World natricine snakes.  Genotypes are identified based on the size 
(in base pairs) of amplified fragments.  Maternal alleles are underlined.  Numbers of offspring exhibiting a given genotype are shown in parentheses. 

Species Locus 

 
Maternal 
Genotype 

 

 Offspring Genotypes  
Inferred 

Paternal Alleles 

Thamnophis 
radix 

3Ts 382/394 241/382 
(6) 

249/382 
(4) 

260/382 
(3) 

241/394 
(6) 

241, 249, 260 

   249/394 
(6) 

    

Thamnophis 
sauritus 

Nesi3 168/199 168/187 
(2) 

176/199 
(1) 

187/199 
(3) 

199/199 
(1) 

176, 187, 199 

 Nesi9 167/185 158/167 
(1) 

160/167 
(2) 

160/185 
(2) 

167/167 
(2) 

158, 160, 167, 185

   167/185 
(1) 

    

Storeria 
dekayi 

Nesi2 157/165 152/157 
(1) 

154/157 
(1) 

154/165 
(1) 

157/159 
(2) 

152, 154, 157, 
159, 165, 180 

   157/165 
(2) 

159/165 
(5) 

165/180 
(1) 

  

 Nesi3 161/165 159/161 
(1) 

161/163 
(3) 

161/168 
(2) 

161/216 
(2) 

159, 163, 168, 216

   163/165 
(2) 

165/216 
(1) 

   

Storeria 
occipitomaculata 

3Ts 240/244 207/240 
(2) 

207/244 
(2) 

236/240 
(1) 

240/240 
(1) 

207, 236, 240 

Nerodia 
rhombifer 

Nesi3 170/176 160/170 
(4) 

160/176 
(2) 

164/170 
(7) 

164/176 
(10) 

160, 164, 172 

   170/172 
(3) 

172/176 
(4) 

   

Regina 
septemvittata 

2Ts 196/207 188/196 
(1) 

188/207 
(4) 

196/196 
(3) 

196/209 
(4) 

188, 196, 207, 209

   207/207 
(1) 

207/209 
(2) 

   

 3Ts 281/289 281/281 
(5) 

281/289 
(5) 

281/293 
(2) 

289/289 
(2) 

281, 289, 293 

   289/293 
(1) 

    

Thamnophis 
melanogaster 

3Ts 264/264 252/264 
(5) 

264/264 
(4) 

  252, 264 

 Nesi10 118/120 118/120 
(5) 

120/120 
(3) 

  118, 120 
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FIGURE 1. Phylogenetic relationships of New World natricine snakes adapted from analyses of de Queiroz et al. (2002, Thamnophis and 
Adelophis) and Alfaro and Arnold (2001, other genera).  Tree shown is based on combined information from strict consensus (Fig. 1 in de 
Queiroz et al. 2002) and maximum likelihood (Fig. 5 in Alfaro and Arnold 2001) with poorly supported nodes (bootstrap proportions <65%) 
collapsed.  Species in which multiple paternity has been confirmed are indicated by black arrows.  Thamnophis melanogaster, in which multiple 
paternity has been tested but not confirmed, is indicated by a white arrow.  Published sources of information on multiple paternity include the 
following: Nerodia sipedon (Barry et al. 1992; Prosser et al. 2002), Thamnophis butleri (Albright 2001), T. elegans (Garner and Larsen 2005), T. 
sirtalis (Gibson and Falls 1975; Schwartz et al. 1989; McCracken et al. 1999; King et al. 2001). 
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semifossorial clades, and among gartersnakes, within 
both the ribbon and the widespread subclades (Fig. 1).  
The Mexican subclade of gartersnakes is the only group 
of New World natricines within which multiple paternity 
has not been documented.  The single Mexican subclade 
member tested here showed no evidence of multiple 
paternity but sample size was low (one litter of just nine 
offspring) and further investigation seems warranted.  
Indeed, given the widespread occurrence of multiple 
paternity within New World natricines demonstrated 
here, documentation of a species with exclusively single 
paternity of litters would seem novel.  

The widespread occurrence of multiple paternity 
among New World natricines suggests that a 
promiscuous or polygynandrous mating system is 
ancestral in this group.  Future investigations 
encompassing natricines from Europe, Africa, Asia and 
Australia would aid in providing a broader phylogenetic 
scope.  Given that multiple paternity also occurs in 
members of the Colubrinae, Homalopsidae, Pythonidae, 
and Viperidae (reviewed by Voris et al. 2008), studies of 
other snake families, especially basal groups, would be 
of interest.   

Promiscuous and polygynandrous mating systems 
present a situation in which sperm competition is likely 
to play an important role in determining male 
reproductive success (Birkhead and Parker 1997; 
Birkhead and Møller 1998; Olsson and Madsen 1998; 
Arnqvist and Rowe 2005).  In such systems, the benefits 
of multiple mating to males are clear:  males that mate 
more frequently and with more females achieve higher 
fecundity (Darwin 1871; Dubey et al. 2009; Ursenbacher 
et al. 2009).  In contrast, the benefits of multiple mating 
to females are less clear (Uller and Olsson 2008).  In the 
Water Python (Liasis fuscus), brood hatching success is 
positively correlated with the number of paternal 
microsatellite alleles observed, suggesting that multiple 
paternity, and the genetic variability it engenders, 
increases female reproductive success (Madsen et al. 
2005).  Information on post-hatching survival and 
reproduction in singly- vs. multiply-sired broods would 
provide a direct test of this possibility.  For example, 
New World natricines often show genetic 
polymorphisms in prey preference at birth (Burghardt 
1975; Arnold 1981; Burghardt et al. 2000) coupled with 
a high frequency of multiple paternity (McCracken et al 
1999; King et al. 2001; Garner et al. 2002; Garner and 
Larsen 2005).  Because neonatal snakes should search 
for alternative prey in different habitats and using 
different tactics, multiple paternity could be a bet-
hedging strategy for females in habitats that undergo 
climatic and prey availability shifts across years. 
Alternatively, some females may mate with multiple 
males in the absence of such benefits, simply as a 
response to physiological stress when courted by males 
(Shine et al. 2003, 2005; Shine and Mason 2005).  

Female T. sirtalis in Manitoba sometimes gape their 
cloacas, allowing intromission, in response to lung 
compression stress caused by the weight of courting 
males (Shine and Mason 2005).  Whether this may occur 
in populations or species with less intense mating 
aggregations is unknown.  Finally, given the widespread 
occurrence of multiple paternity in snakes generally and 
New World natricines in particular, phylogenetic 
(historical) explanations for multiple mating should also 
be considered (Duvall et al. 1993).  The extent of 
multiple paternity in the closest lizard relatives to 
snakes, and the relationship of multiple mating to snake 
social systems, which generally differ from the territorial 
and hierarchical forms of social organization common in 
lizards, also merit attention (Rivas and Burghardt 2005). 

 
Acknowledgments.—We thank Bethia King, J. Michael 

Parrish, and Ken Gasser for comments on the manuscript 
and Kristin Stanford, Jace Robinson, Michael Andre, 
and Michael Koch for capturing snakes in Illinois (IDNR 
permits NH03.0584 and NH04.0584).  Jim Gillingham, 
Kent Bekker, and Javier Manjarrez provided gravid 
snakes and snake tissues from Michigan, Ohio, and 
Mexico, respectively.  Animal handling procedures were 
approved by the Northern Illinois University IACUC 
(ORC #237).  Support for this project was provided by 
the Northern Illinois University Department of 
Biological Sciences, Northern Illinois University Plant 
Molecular Biology Center, Illinois State Academy of 
Science, and Chicago Herpetological Society. 

 
LITERATURE CITED 

 
Albright, J.D. 2001. Microsatellite DNA markers, 

multiple paternity, and the inheritance of morphology 
and behavior in Butler’s Garter Snake (Thamnophis 
butleri). M.A. Thesis, University of Tennessee, 
Knoxville, Tennessee, USA. 117 pp. 

Alfaro, M.E., and S.J. Arnold. 2001. Molecular 
systematics and evolution of Regina and the 
Thamnophiine snakes. Molecular Phylogenetics and 
Evolution 21:408–423. 

Andren, C., G. Nilson, M. Hoggren, and H. Tegelstrom. 
1997. Reproductive strategies and sperm competition 
in the adder, Vipera berus. Pp.129–141 In Venomous 
Snakes, Ecology, Evolution and Snakebite. Thorpe, 
R.S., W. Wüster, and A. Malhotra (Eds.). Oxford 
University Press, London, UK. 

Arnold, S.J. 1981. Behavioral variation in natural 
populations. II. The inheritance of a feeding response 
in crosses between geographic races of the garter 
snake, Thamnophis elegans. Evolution 35:510-515.  

Arnqvist, G., and L. Rowe. 2005. Sexual Conflict. 
Princeton University Press, Princeton, New Jersey, 
USA. 

Avise, J.C., A.G. Jones, D. Walker, and J.A. DeWoody. 



Herpetological Conservation and Biology 
 

91 
 

2002. Genetic mating systems and reproductive 
natural histories of fishes: lessons for ecology and 
evolution. Annual Review of Genetics 36:19–45. 

Barry, F.E., P.J. Weatherhead, and D.P. Phillip. 1992. 
Multiple paternity in a wild population of Northern 
Water Snakes Nerodia sipedon. Behavioral Ecology 
and Sociobiology 30:193–199. 

Birkhead, T.R. 2000. Promiscuity: An Evolutionary 
History of Sperm Competition. Harvard University 
Press, Cambridge, Massachusetts, USA. 

Birkhead, T.R., and A.P. Møller. 1998. Sperm 
Competition and Sexual Selection. Academic Press, 
San Diego, California, USA. 

Birkhead, T.R., and G.A. Parker. 1997. Sperm 
Competition and Mating Systems. Pp. 121–145 In 
Behavioural Ecology: an Evolutionary Approach. 4th 
Edition. Krebs, J.R., and N.B. Davies (Eds.). 
Blackwell Science, Oxford, UK. 

Blanchard, F.N., and F.C. Blanchard. 1941. The 
inheritance of melanism in the garter snake 
Thamnophis sirtalis sirtalis (Linnaeus), and some 
evidence of effective autumn mating. Michigan 
Academy of Science, Arts and Letters 26:177–193.  

Blouin-Demers, G., H.L. Gibbs, and P.J. Weatherhead. 
2005. Genetic evidence for sexual selection in Black 
Ratsnakes, Elaphe obsoleta. Animal Behaviour 
69:225–234. 

Brodie, E.D., III, and T. Garland, Jr. 1993. Quantitative 
genetics of snake populations. Pp. 315–362 In Snakes: 
Ecology and Behavior. Seigel, R.A., and J.T. Collins 
(Eds.). McGraw Hill, New York, New York, USA.  

Burghardt, G.M. 1975. Chemical prey preference 
polymorphism in newborn garter snakes, Thamnophis 
sirtalis. Behaviour 52:202–225. 

Burghardt,G.M., D.G. Layne, and L. Konigsberg. 2000. 
The genetics of dietary experience in a restricted 
natural population. Psychological Science 11:69–72. 

Calsbeek, R., C. Bonneaud, S. Prabhu, N. Manoukis, and 
T.B. Smith. 2007. Multiple paternity and sperm 
storage lead to increased genetic diversity in Anolis 
lizards. Evolutionary Ecology Research 9:495–503.  

Crews, D. 1980. Studies in squamate sexuality. 
BioScience 30:835–838. 

Darwin, C.R. 1871. The Descent of Man and Selection 
in Relation to Sex. D. Appleton and Company, New 
York, New York, USA. 

de Queiroz, A., R. Lawson, and J.A. Lemos-Espinal. 
2002. Phylogenetic relationships of North American 
garter snakes (Thamnophis) based on four 
mitochondrial genes: how much DNA sequence is 
enough? Molecular Phylogenetics and Evolution 
22:315–329. 

Devine, M.C. 1975. Copulatory plugs in snakes: 
enforced chastity. Science 187:844–845.  

Devine, M.C. 1977. Copulatory plugs, restricted mating 
opportunities and reproductive competition among 

male garter snakes. Nature 267:345–346. 
Dubey, S., G.P. Brown, T. Madsen, and R. Shine. 2009. 

Sexual selection favors large body size in males of a 
tropical snake (Stegonotus cucullatus, Colubridae). 
Animal Behaviour 77:177–182.  

Duvall, D., G.W. Schuett, and S.J. Arnold. 1993. 
Ecology and evolution of snake mating systems. Pp. 
165–200 In Snakes: Ecology and Behavior. Seigel, 
R.A., and J.T. Collins (Eds.). McGraw Hill, New 
York, New York, USA.  

Eccard, J.A., and J.B.W. Wolf. 2009. Effects of brood 
size on multiple-paternity rates: a case for ‘paternity 
share’ as an offspring-based estimate. Animal 
Behaviour 78:563–571. 

Garner, T.W.J. 1998. A molecular investigation of 
population structure and paternity in the Common 
Garter Snake, Thamnophis sirtalis. M.S. Thesis, 
University of Victoria, Victoria, British Columbia, 
Canada. 121 pp. 

Garner, T.W.J., P.T. Gregory, G.F. McCracken, G.M. 
Burghardt, B.F. Koop, S.E. McLain, and R.J. Nelson. 
2002. Geographic variation of multiple paternity in the 
Common Garter Snake (Thamnophis sirtalis). Copeia 
2002:15–23. 

Garner, T.W.J., and K.W. Larsen. 2005. Multiple 
paternity in the Western Terrestrial Garter Snake, 
Thamnophis elegans. Canadian Journal of Zoology 
83:656–663. 

Gibson, A.R., and J.B. Falls.  1975.  Evidence for 
multiple insemination in the common garter snake, 
Thamnophis sirtalis.  Canadian Journal of Zoology 53: 
1362-1368. 

Gist, D.H., and J.M. Jones. 1987. Storage of sperm in the 
reptilian oviduct. Scanning Microscopy 1:1839–1849. 

Griffith, S., I. Owens, and K. Thuman. 2002. Extrapair 
paternity in birds: a review of interspecific variation 
and adaptive function. Molecular Ecology 11:2194–
2212. 

Halpert, A.P., W.R. Garstka, and D. Crews. 1982. Sperm 
transport and storage and its relation to the annual 
sexual cycle of the female Red-sided Garter Snake, 
Thamnophis sirtalis parietalis. Journal of Morphology 
174:149–159. 

King, R.B., W.B. Milstead, H.L. Gibbs, M.R. Prosser, 
G.M. Burghardt, and G.F. McCracken. 2001. 
Application of microsatellite DNA markers to 
discriminate between maternal and genetic effects on 
scalation and behavior in multiply sired garter snake 
litters. Canadian Journal of Zoology 79:121–128. 

Kissner, K.J., P.J. Weatherhead, and H.L. Gibbs. 2005. 
Experimental assessment of ecological and phenotypic 
factors affecting male mating success and polyandry in 
Northern Watersnakes, Nerodia sipedon. Behavioral 
Ecology and Sociobiology 59:207–214. 

LaDage, L.D., W.H.N. Gutzke, R.A. Simmons, and 
M.H. Ferkin. 2008. Multiple mating increases 



Wusterbarth et al.—Widespread multiple paternity in New World Natricine snakes 

92 
 

fecundity, fertility and relative clutch mass in the 
female Leopard Gecko (Eublepharis macularius). 
Ethology 114:512–520. 

Madsen, T. 2008. Female nonavian reptiles benefit from 
multiple matings. Molecular Ecology 17:3753.  

Madsen, T., B. Ujvari, M. Olsson, and R. Shine. 2005. 
Paternal alleles enhance female reproductive success 
in tropical pythons. Molecular Ecology 14:1783–1787. 

McCracken, G.F., G.M. Burghardt, and S.E. Houts. 
1999. Microsatellite markers and multiple paternity in 
the garter snake Thamnophis sirtalis. Molecular 
Ecology 8:1475–1479. 

Olsson, M., and T. Madsen. 1998. Sexual selection and 
sperm competition in reptiles. Pp.503–579 In Sperm 
Competition and Sexual Selection. Birkhead, T.R., and 
A.P. Moller (Eds.). Academic Press, San Diego, 
California, USA. 

Olsson, M., and T. Madsen. 2001. Promiscuity in Sand 
Lizards (Lacerta agilis) and Adder Snakes (Vipera 
berus): causes and consequences. Journal of Heredity 
92:190–197. 

Pearse, D.E., F.J. Janzen, and J.C. Avise. 2002. Multiple 
paternity, sperm storage, and reproductive success of 
female and male Painted Turtles (Chyrsemys picta) in 
nature. Behavioral Ecology and Sociobiology 51:164–
171. 

Prosser, M.R., H.L. Gibbs, and P.J. Weatherhead. 1999. 
Microgeographic population genetic structure in the 
Northern Water Snake, Nerodia sipedon sipedon 
detected using microsatellite DNA loci. Molecular 
Ecology 8:329–333. 

Prosser, M.R., P.J. Weatherhead, H.L. Gibbs, and G.P. 
Brown. 2002. Genetic analysis of the mating system 
and opportunity for sexual selection in Northern Water 
Snakes (Nerodia sipedon). Behavioral Ecology 
13:800–807. 

Refsnider, J.M. 2009. High frequency of multiple 
paternity in Blanding’s Turtle (Emys blandingii). 
Journal of Herpetology 43:74–81. 

Rivas, J.A., and G.M. Burghardt. 2005. Snake mating 
systems, behavior, and evolution: the revisionary 
implications of recent findings. Journal of 
Comparative Psychology 119:447–454. 

Ross, P., Jr., and D. Crews. 1977. Influence of the 
seminal plug on mating behaviour in the garter snake. 
Nature 267:344–345. 

Rossman, D.A., N.B. Ford, and R.A. Seigel. 1996. The 
Garter Snakes: Evolution and Ecology. University of 
Oklahoma Press, Norman, Oklahoma, USA. 

Schwartz, J.M., G.F. McCracken, and G.M. Burghardt. 

1989. Multiple paternity in wild populations of the 
garter snake, Thamnophis sirtalis. Behavioral Ecology 
and Sociobiology 25:269–273. 

Sever, D.M., and T.J. Ryan. 1999. Ultrastructure of the 
reproductive system of the Black Swamp Snake 
(Seminatrix pygaea): Part I. Evidence for oviductal 
sperm storage. Journal of Morphology 241:1–18. 

Shine, R., T. Langkilde, and R.T. Mason. 2003. Cryptic 
forcible insemination: male snakes exploit female 
physiology, anatomy, and behavior to obtain coercive 
matings. The American Naturalist 162:653–667. 

Shine, R., and R.T. Mason. 2005. Does large body size 
in males evolve to facilitate forcible insemination? A 
study on garter snakes. Evolution 59:2426–2432. 

Shine, R., D. O’Connor, and R.T. Mason. 2000a. Sexual 
conflict in the snake den. Behavioral Ecology and 
Sociobiology 2000:392–401. 

Shine, R., M.M. Olsson, and R.T. Mason. 2000b. 
Chastity belts in gartersnakes: the functional 
significance of mating plugs. Biological Journal of the 
Linnean Society 2000:377–390. 

Shine, R., M. Wall, T. Langkilde, and R.T. Mason. 2005. 
Battle of the sexes: forcibly inseminating male garter 
snakes target courtship to more vulnerable females. 
Animal Behaviour 70:1133–1140. 

Simmons, L.W. 2005. The evolution of polyandry: 
sperm competition, sperm selection, and offspring 
viability. Annual Review of Ecology and Systematics 
36:125–146. 

Uller, T., and M. Olsson. 2008. Multiple paternity in 
reptiles: patterns and processes. Molecular Ecology 
17:2566–2580.  

Ursenbacher, S., C. Erny, and L. Fumagalli. 2009. Male 
reproductive success and multiple paternity in wild, 
low-density populations of the Adder (Vipera berus). 
Journal of Heredity 100:365–370.  

Voris, H.K., D.R. Karns, K.A. Feldheim, B. Kechavarzi, 
and M. Rinehart. 2008. Multiple paternity in the 
Oriental-Australian rear-fanged watersnakes 
(Homalopsidae). Herpetological Conservation and 
Biology 3:88–102. 

Westneat, D.F., and J.R.K. Stewart. 2003. Extra-pair 
paternity in birds: causes, correlates, and conflict. 
Annual Review of Ecology and Systematics 34:365–
396. 

Wusterbarth, T.L. 2009. Sexual selection and the mating 
strategies of New World natricine snakes. Ph.D. 
Dissertation, Northern Illinois University, DeKalb, 
Illinois, USA. 134 p. 



Herpetological Conservation and Biology 
 

93 
 

 

  

THERESA WUSTERBARTH is a human anatomy and physiology 
instructor at Northeast Wisconsin Technical College, Green Bay, 
Wisconsin.  This article is based on a chapter from her Ph.D. 
dissertation, completed at Northern Illinois University in 2009, which 
also included an analysis of multiple paternity within an Illinois 
Thamnophis radix population and sperm characteristics of T. radix 
and T. butleri.  (Photographed by Debra Olbrich) 
 

MEL DUVALL is an Associate Professor at Northern Illinois 
University.  He studies molecular evolution to investigate ancient 
divergences as well as recent events shaping the systematics and 
biogeographies of species clusters.  One aspect of this work is the 
study of small genomes, such as the chloroplast genomes of cereals 
and other plants, to explore adaptation and infer phylogenies. 
(Photographed by Don Butler) 
 

 
 
 
RICHARD KING is an Associate 
Professor at Northern Illinois University, 
DeKalb, Illinois.  His interests center on 
ecological and evolutionary processes at 
local and regional scales and the 
conservation biology of Midwestern 
amphibians and reptiles.  He is pictured 
measuring a Lake Erie watersnake on 
Kelleys Island, Ohio as part of a long-
term (30 year) study.  (Photographed by 
Deb Jacobs) 

 
  

SCOTT GRAYBURN is Director of the Molecular Core Laboratory at 
Northern Illinois University.  He studies gene expression in diverse 
organisms using quantitative real-time PCR and collaborates 
extensively with faculty in the Department of Biological Sciences and 
elsewhere.  (Photographed by Don Butler) 
 

GORDON BURGHARDT is an Alumni Distinguished Service Professor 
in the Departments of Psychology and Ecology & Evolutionary 
Biology at the University of Tennessee.  His research focuses on the 
relationship between genetics and early environments in the 
development of behavior patterns and sensory processes, 
concentrating on natricine snakes with feeding, antipredator, and 
social behavior as the target systems.  (Photographed by Gisela 
Kaufmann) 

 


