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Abstract.—Counts of numbers of egg masses have been proposed as a state variable for monitoring Wood Frog (Lithobates 
sylvaticus) populations, and some important benefits of this approach have been identified (e.g., low cost).  If the power to
detect trends in time series of numbers of egg masses is low, however, this approach may not be useful.  We used 
computer simulation to evaluate the effects of several parameters on the statistical power of detecting trends in counts of
numbers of egg masses.  Results of the simulations indicate that a minimum of nine years of monitoring is necessary to
have high statistical power ( 0.80) for detecting a 10% decline per year.  For populations experiencing low rates of
annual decline ( 4% annually), two decades or more of monitoring data are required to achieve high levels of power.
Increasing the proportion of egg masses detected by surveyors results in only minor improvements in statistical power,
while increasing the Type I error rate () results in greater improvements.  Insufficient duration of financial and
institutional support for collection of data is a common cause of failure in monitoring programs.  The results of this study
provide guidance regarding the necessary duration of monitoring programs for amphibian populations and highlight
components of the sampling design that can be altered to improve statistical power. 
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INTRODUCTION 
 

Over the last 20 years, increasing evidence of declines 
in amphibian populations has led to the development of 
many monitoring programs (e.g., the North American 
Amphibian Monitoring Program, NAAMP; Weir and 
Mossman 2005).  Population monitoring is the repeated 
measurement over time of some attribute (i.e., state 
variable) that is informative of a population’s status 
(Thompson et al. 1998; Noon 2003).  For example, the 
Amphibian Research and Monitoring Initiative (ARMI) 
is using the proportion of sample units (e.g., ponds, 
stream stretches) occupied as an indicator of the status of 
amphibian populations in some national parks in the 
U.S. (Muths et al. 2005).  In most cases, a primary 
objective of monitoring programs is to detect a declining 
trend in the state variable across time, so that action can 
be taken to prevent unacceptable losses or extinction 
(Thompson et al. 1998; Maxwell and Jennings 2005; 
Marsh and Trenham 2008). 

In developing a population monitoring program, 
several important decisions are necessary.  These 
decisions relate to a variety of issues from determining 
the goals of the program to selecting the analytical 
methods that will be used.  Of all these decisions, 
however, selection of an appropriate state variable is 
among the most critical (Noon and McKelvey 2006).  
Given that a primary goal of most monitoring programs 
is to detect declines in the status of a population, the 

state variable used in these programs should meet the 
following two criteria at a minimum:  change in the 
variable should reflect declines in the population’s status 
and change in the state variable should have a high 
probability of being detected (Gibbs 2000; Noon 2003; 
Maxwell and Jennings 2005; Noon and McKelvey 
2006). 

Counts of numbers of egg masses have been promoted 
as a valid state variable for monitoring Wood Frog 
(Lithobates sylvaticus) populations (Crouch and Paton 
2000) and have been used to monitor Wood Frogs and 
other species of amphibians (Buckley and Beebee 2004; 
Vasconcelos and Calhoun 2006; Loman and Andersson 
2007).  In assessing the appropriateness of counts of 
numbers of egg masses for monitoring programs, some 
important issues have been considered (e.g., the cost of 
collecting the counts relative to collecting other kinds of 
data; Crouch and Paton 2000).  However, time series of 
counts of the number of individuals in pond-breeding 
amphibian populations have other attributes that suggest 
they may be a poor state variable for monitoring 
programs.  First, these time series tend to be highly 
variable (Green 2003).  For example, coefficients of 
variation (CV) ranged from 0.29 to 1.29 across 10 time 
series of counts of Wood Frog adults from Berven 
(1990, 1995) and Vasconcelos and Calhoun (2006) 
(average = 0.71; CV is the standard deviation of a set of 
counts divided by the mean of the set of counts as in 
Lande et al. [2003] and Green [2003]).  Similarly, time 
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TABLE 1.  The parameters used in the abundance, sampling and decision models, as well as the range of possible values for each parameter.  The
range of possible values for study duration and population growth rate is abbreviated in the table to minimize the length of the table.  Study 
duration ranged from four to 30 years (in intervals of one year) and the population growth rate ranged from 0.90 (10% loss in egg mass 
abundance per year) to 1.0 (no change in egg mass abundance per year) in intervals of approximately 0.05%. 

 Study Duration in number 
of  years 

(27 levels) 

Population growth  
rate 

(, 20 levels) 

Detection Probability  
Per Surveyor 
(p, 3 levels) 

Number of Surveyors 
(3 levels) 

Type I Error Rate 
(, 3 levels) 

Possible 
Values 

4 0.900 0.50 1 0.05 

5 0.905 0.75 2 0.10 

6 0.910 0.94 3 0.15 

 
 

 
    

30 1.00    

      

series of counts of the number of egg masses from a 
population of Dusky Gopher Frogs, Rana sevosa, and 
Natterjack Toads, Bufo calamita, showed high levels of 
variability (CV = 0.90 for Dusky Gopher Frogs [Richter 
et al. 2003] and CV  0.51 for Natterjack Toads 
[Buckley and Beebee 2004]).  Therefore, tests for a trend 
in these time series will have low power (i.e., a low 
probability of detecting a trend given a trend is present), 
unless the time series are of considerable length, the 
magnitude of their trends is large, or covariates are used 
to control for some of the variation (Reed and Blaustein 
1995).  For a population of Ornate Chorus Frogs 
(Pseudacris ornata), estimates of power indicated that a 
time series of 32 years would be required to achieve 
power of 0.80 (Hayes and Steidl 1997).  Second, the use 
of counts in monitoring programs compromises 
inference regarding a trend in a state variable, because a 
trend may be confounded with variation in detection 
probability.  Change in counts over time may represent 
change in actual abundance (the change of interest in 
monitoring programs) or change in the proportion of 
individuals in the population that are detected and 
counted (Williams et al. 2002; Grant et al. 2005). 

The objective of this project was to assess the 
statistical power of using counts of the number of egg 
masses in monitoring programs for Wood Frogs.  We 
addressed the following questions:  How many years of 
count data will be required to have high power (power  
0.80) to detect negative trends of various magnitudes in 
the abundance of Wood Frog egg masses?  How does 
variation in detection probability of Wood Frog egg 
masses and the number of surveyors conducting surveys 
affect the number of years required to achieve high 
power?  What effect does increasing the Type I error 
rate, , have on the number of years to achieve high 
power?  We chose to base the simulations on Wood Frog 
egg masses, because sufficient data were available to 
parameterize a simulation model.  Several time series of 
counts for Wood Frogs have been published (Berven 
1990, 1995; Vasconcelos and Calhoun 2006), and 
detection probabilities of egg masses have been 
estimated (Grant et al. 2005; Scherer 2008).  Because 

time series from populations of other pond-breeding 
amphibians show similar levels of temporal variability 
(Green 2003), however, we suspect that the results of 
this analysis will provide useful guidance for monitoring 
other species as well. 

 
METHODS 

 
We used computer simulation to generate time series 

of counts of the number of Wood Frog egg masses 
similar to the kind of data that come from annual surveys 
at a breeding pond.  The simulation model had three 
components:  the abundance model, sampling model, 
and decision model.  We used the abundance model to 
generate time series of egg mass abundance with a 
predetermined declining trend, and the sampling model 
to mimic the process of surveyors counting the number 
of egg masses at a pond.  The sampling model assumed 
detection probability was less than one and, 
consequently, generated time series of counts that could 
be smaller than the number egg masses present at the 
pond.  Finally, we used the decision model to analyze 
the trend of each simulated time series of egg mass 
counts and determine if the results of the analysis 
provided the correct inference regarding the 
predetermined decline in egg mass abundance. 

Because we were interested in the effects of study 
duration (i.e., the number of years of monitoring), 
population growth rate, detection probability, number of 
surveyors, and Type I error rate on the power to detect 
trends, we generated 10,000 replicate time series each 
under a particular combination of model parameters 
(Table 1).  For example, one set of 10,000 replicate time 
series was generated assuming a monitoring program of 
10 years, a population growth rate of 0.95 (5% decline in 
abundance per year), a detection probability of 0.75, two 
surveyors, and  of 0.05. 

 
Abundance model.—The purpose of the abundance 

model was to project egg mass abundance across years 
using different population growth rates (Table 1).  To 
assess the effect of monitoring duration on statistical  
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FIGURE 1.  Schematic of the approach used to incorporate stochasticity
into the time series of egg mass abundance.  Nt and Nt + 1 represent egg 
mass abundance at years t and t + 1.  t represents the expected
population growth rate between years t and t + 1 and, for the purposes
of this figure, is set at 0.95 (5% decline per year).  E(t) represents the 
expected value of the gamma distribution (i.e., the expected population
growth rate).  E(Nt * t) represents the expected value of the Poisson
distribution. 
 
power, we generated time series of egg mass abundance  
from four years to 30 years in duration (Table 1).  The 
abundance model is a stochastic exponential model of 
the following general form: 

Nt+1 = tNt, 
where Nt is the abundance of egg masses during the 
breeding season in year t and Nt+1 is the abundance of 
egg masses the following breeding season.  The 
population growth rate, t, defines the proportional 
decline or increase in abundance between years t and t 
+1.  Values of t less than one indicate a decreasing 
population, whereas values equal to or greater than one 
indicate a stable (no change in abundance) or increasing 
population (Gotelli 2001).  For example, the abundance 
of egg masses will decline by 5% between the breeding 
seasons in years t and t + 1, if t = 0.95.  In a 
deterministic exponential model, the same value of t 
would apply across every interval t to t + 1, and a plot of 
abundance across years would appear as a smooth curve.  
Time series of amphibian counts, however, are not 
smooth curves.  Rather, they often show high levels of 
variability around a trend line (Pechmann et al. 1991; 
Richter et al. 2003; Loman and Andersson 2007).  
Therefore, we incorporated environmental and 
demographic stochasticity into the abundance model 
(Fig. 1).  Environmental stochasticity is change in t 
across intervals due to changes in environmental 
conditions (Gotelli 2001).  During years of favorable 
environmental conditions, individuals have higher 
probabilities of survival and tend to produce more 
offspring.  Consequently, abundance of egg masses 
increases between t and t + 1 (t > 1).  In years of poor 
conditions, reduced survival and reproductive rates cause 
a decrease in abundance of egg masses between t and t + 
1 (t < 1).  We incorporated environmental stochasticity 
into the abundance model by randomly selecting t from 

a gamma distribution at every interval t to t + 1.  We 
chose a gamma distribution because it is flexible and 
appropriate for modeling non-negative random variables 
(t is always  0; Rice 1995).  The expected value of the 
gamma distribution was the population growth rate of 
interest for the current set of replicate time series.  For 
example, the expected value of the gamma distribution 
from which each t was drawn was 0.95 for all simulated 
time series with a population growth rate = 0.95.  To 
implement demographic stochasticity into the abundance 
model, we multiplied abundance of the previous year, Nt, 
by the selected value of t, and the resulting product 
became the expected value of a Poisson distribution.  We 
drew the abundance value for Nt + 1 from this Poisson 
distribution (Allen 2003; Fig. 1). 

For each simulation, the initial population size, N0, 
was 500 egg masses which was in the range of counts of 
adult female Wood Frogs (Berven 1995) and Wood Frog 
egg masses (Egan and Paton 2004) from field studies.  
To examine the effect of population growth rate on the 
power to detect a trend, we projected egg mass 
abundance with an expected value of t as low as 0.9 
(i.e., a 10% annual decline in abundance) to as high as 
one (i.e., no change in abundance across years; Table 1) 
with 18 increments in between.  Reported rates of 
decline in published analyses of amphibian time series 
ranged from 0.004% to 8% per year (Hayes and Steidl 
1997; Meyer et al. 1998). 

 
Sampling model.—The abundance model projected 

the number of egg masses for every breeding season, t, 
in each simulated time series.  We developed the 
sampling model to simulate the process of one to three 
surveyors independently searching the entire pond and 
counting egg masses.  Because some proportion of 
Wood Frog egg masses are not detected during many 
surveys, a count will represent a fraction of the total 
number of egg masses in the pond (Grant et al. 2005; 
Scherer 2008). 

We used the binomial model to simulate the sampling 
process.  The binomial model can be used to simulate the 
number of successful outcomes given a particular 
number of trials and a probability of success.  In this 
project, we used the binomial model to select randomly 
the number of egg masses that were detected and 
counted during a breeding season, Ct, given the total 
number of egg masses at the pond, Nt (from the 
abundance model), and a probability of detection by a 
surveyor, p.  Previous studies suggest the probability of 
detection of Wood Frog egg masses varies between 
years and surveyors (Grant et al. 2005; Scherer 2008).  
Therefore, we randomly selected the probability of 
detection for each breeding season and surveyor from a 
beta distribution.  The beta distribution is often used to 
model probabilities because, like a probability, it is 
defined on the interval from 0 to 1.  To evaluate the
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effect of detection probability on power, we created 
three beta distributions with expected values that 
represented scenarios of high (p = 0.94), medium (p = 
0.75) and low (p = 0.50) detection probability.  The 
detection probability of Wood Frog egg masses is 
generally high, because they are large (approximately 8 
cm diameter) and tend to be deposited at or just below 
the surface of the water (Hammerson 1999; Grant et al. 
2005).  For the high detectability scenario, we estimated 
the beta distribution by calculating the mean and 
variance of 37 estimates of p from two field studies of 
Wood Frog egg masses (Grant et al. 2005; Scherer 2008) 
using a method-of-moments approach (Rice 1995).  The 
expected value of p was 0.94 (variance,      = 0.0064).  
For the medium and low detectability scenario, we used 
the same variance as in the high detectability scenario 
but changed the expected values of p to 0.75 and 0.50. 

In simulations where two or three people survey a 
pond, we assumed each surveyor conducted an 
independent search of the entire pond.  Therefore, each 
egg mass had multiple opportunities to be detected, and 
the probability of detection had a slightly different 
interpretation.  In those simulations, p represented the 
probability that an egg mass was detected and counted 
by at least one of the surveyors.  The probability that two 
surveyors fail to detect and count an egg mass can be 
represented as:  (1 – p1) * (1 – p2), where p1 and p2 
represent the detection probabilities for each surveyor 
and were independently drawn from a beta distribution.  
Therefore, the probability that an egg mass was detected 
and counted by at least one of the surveyors is [1 – ((1 – 
p1) * (1 – p2))].  We denoted this quantity as p*2 and used 
it as the probability of detection in the binomial model.  
Similarly, in simulations with three surveyors, the 
probability that at an egg mass was detected and counted 
by at least one of the surveyors is [1 – ((1 – p1) * (1 – p2) 
* (1 – p3)] and was denoted as p*3. 

 
Decision model.—We used the decision model to 

determine if a declining trend in the time series of egg 
mass counts was present.  For each time series, we log-
transformed the counts and used linear regression (LR) 
to evaluate the null hypothesis of no trend (as in Meyer 
et al. 1998).  An essential step in null hypothesis testing 
is to specify an acceptable Type I error rate (; the 
probability of falsely rejecting the null hypothesis), and 
it is common in ecological studies to set  at 0.05 (Di 
Stefano 2003).  Yet, the indiscriminant use of α = 0.05 
does not take the relative costs of a Type I and Type II 
(failing to reject a false null hypothesis) errors into 
consideration.  For management of wildlife populations, 
a Type II error may be more costly than a Type I error 
(Field et al. 2007).  Failing to take action early in the 
decline of a population may result in more costly 
management actions (e.g., captive rearing programs) or 
irreversible losses in populations.  Therefore, many 

authors have argued that increasing α is appropriate in 
order to increase power in monitoring programs (Gibbs 
et al. 1998; Field et al. 2007).  To evaluate the effect of 
increasing  on the power to detect trends in time series 
of egg mass counts, we used  = 0.05, 0.10 and 0.15. 

We used the following rules to determine if the 
sampling methods and LR resulted in the correct 
inference regarding the underlying trend in egg mass 
abundance.  For simulations with a population growth 
rate < 1.0, the results of the LR gave the correct 
inference if the P-value  α and the estimated slope of 
the regression line (

1̂ ) was < 0 (i.e., the expected 

negative trend was detected).  For simulations with a 
population growth rate = 1.0, the results of the LR 
provided the correct inference if the P-value > α, or if 
the P-value < α and the estimated slope of the regression 
line was > 0 (i.e., a negative trend was not detected).  
We conducted simulations in the R statistical software 
package (R Core Development Team 2007) and used the 
proportion of time series that resulted in a correct 
inference as a measure of statistical power. 

 
Assessing temporal variability in simulated data.—A 

key factor in the power of detecting a trend is the amount of 
temporal variability in a time series (Gibbs 2000).  
Therefore, it is important that the variability in the 
simulated time series was comparable to the variability 
reported from field studies of Wood Frog populations.  
Berven (1995) provided time series of counts of Wood Frog 
females from 10 populations in Michigan, Maryland, and 
Virginia.  The duration of the time series ranged from six to 
14 years, and we computed the CV for each time series as 
an estimate of the variability in numbers of Wood Frog egg 
masses across years.  We compared the variability in the 
simulated time series of egg mass counts to the variability 
in the time series of females from Berven (1995) both 
graphically and numerically. 

For the graphical analysis, we extracted and graphed 
the counts that represented the 2.5th and 97.5th percentile 
and the 25th and 75th percentile for each year from a 
simulated set of 40,000, 14-year time series.  We 
compared this graph to the 14-year time series from 
Berven (1995; Fig. 2).  To make this comparison 
meaningful, we estimated the trend in the time series of 
Wood Frog females from Berven (1995) by fitting an 
exponential model to the data and used the estimate as 
the decline rate in the simulated time series.  In addition 
to the graphical comparison, we compared the 
distribution of CVs from the simulated time series 
with the CVs of the 10 time series from Berven (1995). 

 
RESULTS 

 
Graphically, variability in the simulated time series 

of the numbers of egg masses approximated variation in 
the time series of counts of female Wood Frogs from the 

2
p
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FIGURE 2.  A comparison of the variability in the simulated time series
of egg mass counts to the variability in a time series of counts of females
from a population of Wood Frogs in Michigan (Berven 1995).  The black
circles connected by a solid line represent the time series of counts of 
females from this population (the count from the fourth year was
missing).  The dotted line represents the 2.5th and 97.5th percentiles, the 
dashed line represents the 25th and 75th percentiles, and the bolded solid
line represents the mean of the 40,000 simulated time series. 

 

field study (Fig. 2).  Of the 13 counts from Berven 
(1995), 12 (92%) are within the middle 95% of counts 
from the simulation model.  Eight of the 13 (62%) are 
within the middle 50% of counts from the simulation 
model.  Numerically, the simulated time series also 
showed similar levels of variability as the time series 
from the field studies.  The mean CV across the 40,000 
simulated time series was 0.80, and the middle 50% of 
CVs ranged from 0.53 to 1.02.  The CV of the 14-year 
time series of counts of Wood Frog females from Berven 
(1995) was 0.81.  The average CV from the other nine 
Wood Frog populations in Berven (1995) was 0.85 
(range = 0.29 to 1.59), similar to the average CV across 
the simulated time series. 

Under the poorest conditions for detecting a decline in 
the simulated time series of annual counts of egg masses 
(p = 0.50, one surveyor and  = 0.05), more than 30 
years were required to attain high power for detecting a 
decline when the population growth rate was near 1.0 
(Fig. 3a).  As expected, power increased as the duration 
of the study increased and the population growth rate 
decreased (Fig. 3).  Even at the smallest population 
growth rate (expected value of t = 0.90), however, 12 
years of counts were required to achieve power of 0.80 
under these conditions (Fig. 3a).  After 12 years with a 
population growth rate of 0.90, the number of egg 
masses in the population would have declined by more 
than 70% from the starting value of 500 egg masses. 

Previous research suggests the detection probability 
of Wood Frog egg masses is much higher than 0.50 
(Grant et al. 2005; Scherer 2008).  Improved detection  

FIGURE 3.  Power to detect negative trends in egg mass counts for 
different monitoring durations and population growth rates () and 
under two combinations of detection probability and number of 
surveyors:  a) detection probability, p = 0.5 (low detectability), one 
observer; b) p = 0.94 (high detectability) and three observers.  As the 
shading changes from light gray to black in each graph, power 
decreases.  The thick black line represents power of 0.80, and all area 
above and to the left of the line represents monitoring conditions of 
high power.  The far right-hand side of each graph represents 
simulations with an expected population growth rate,  = 1.0 (no 
underlying trend in egg mass counts).  In these simulations, a correct 
inference resulted when the regression was not significant.  As with the 
simulations with  < 1.0, lighter shading indicates that a higher 
percentage of simulations resulted in a correct inference.  As the 
number of years of monitoring increases, the shading gets darker, 
because a higher percentage of simulations result in a significant 
regression (i.e., an incorrect inference or higher Type I error rates).  In 
both graphs,  = 0.05. 

probability, whether by improving the ability of 
surveyors to find egg masses or adding surveyors to field 
crews, resulted in only slight improvements in power 
(Fig. 3a and 3b).  Increasing detection probability and 
the number of surveyors from their minimum values (p = 
0.5 and 1 observer) to their maximum values (p = 0.94 
and 3 observers) only decreased the amount of time 
required to achieve high power by one to two years for a 
particular population growth rate (Fig. 3a and 3b).  Even 
under the best sampling conditions (p = 0.94 and 3 
observers), time series of two decades or more were still 
required to achieve high power when population growth 
rates were near one (approximately 0.96 to 0.99, Fig. 3b), 
and a minimum of a decade of counts was required when 
population growth rates were near 0.90. 

Increasing  from 0.05 to 0.10 decreased the number 
of years required to achieve high power by 1 to 3 years 
across population growth rates and sampling conditions 
(Fig. 4), and increasing  from 0.05 to 0.15 resulted in a 
decrease of 2 to 4 years.  By definition, however, 
increasing  has a cost of higher Type I error rates. The 
results of the simulations highlight this cost.  As  
increased, significant declining trends were detected in 1
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FIGURE 4.  Power to detect negative trends in egg mass counts for different levels of : a) 0.05, b) 0.10, and c) 0.15.  As the shading changes
from light gray to black on each plot, power decreases.  The thick black line represents power of 0.80, and the area above and to the left of the 
black line represents monitoring conditions of high power.  The far right-hand side of each graph represents simulations with an expected 
population growth rate,  = 1.0 (no underlying trend in egg mass counts).  In these simulations, a correct inference resulted when the regression
was not significant.  As with the simulations with  < 1.0, lighter shading indicates that a higher percentage of simulations resulted in a correct
inference.  Because  establishes the Type I error rate, the shading is darker for a given monitoring duration across the three graphs.  For all 
levels of , this figure shows simulated power for p = 0.50 and one observer. 
 

to 11% more of the simulations with a population growth 
rate = 1.0 (Fig. 4 and 5).  Noting the high rate of Type I 
errors in time series of 14 years or more is also 
important.  Across simulations, the probability of a Type 
I error ranged from 0.34 to 0.44 for time series with 14 
years or more of counts. 

 
DISCUSSION 

 
A common reason for failure in monitoring programs 

is insufficient duration of financial and institutional 
support for collection of data (Elzinga et al. 2001; Field 
et al. 2007).  A power analysis should be a central 
component in the evaluation of a proposed monitoring 
program’s survey design and state variable (Gibbs 2000; 
Maxwell and Jennings 2005; Legg and Nagy 2006; Field 
et al. 2007) and can provide valuable insights regarding 
the necessary duration of the project and other elements 
of the sampling design that can be altered to improve 
efficiency. 

The results of this power analysis indicate that a 
minimum of nine years of monitoring will be required to 
achieve high power to detect declining trends in counts 
of Wood Frog egg masses unless rates of decline are 
greater than 10% per year.  At lower rates of decline, 

two decades or more of counts may be necessary to 
achieve high power.  Without a long-term commitment, 
therefore, initiation of a monitoring program for a Wood 
Frog population with egg mass counts as the state 
variable will likely represent an inefficient use of 
resources.  In addition, the results suggest that improving 
the ability of surveyors to find egg masses (e.g., via 
better training) or increasing search effort would only 
marginally increase power for a given duration and 
population growth rate.  Reductions in power due to the 
use of counts were small compared to the reductions 
caused by the high levels of variability observed in time 
series from Wood Frog populations (Berven 1990, 1995; 
Vasconcelos and Calhoun 2006). 

Increasing , on the other hand, resulted in larger 
increases in power.  Over the range of values used in 
these simulations, increases in  from 0.05 to 0.10 
reduced the number of years to achieve high power by 
one to three years, while increases from 0.05 to 0.15 
resulted in a reduction of two to four years.  Of course, 
these improvements in power were accompanied by 
higher Type I error rates.  Field et al. (2004) argued that 
the cost of Type I errors (concluding that a population is 
declining when it is not) in monitoring programs are 
often smaller in magnitude and duration than Type II 
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FIGURE 5.  For different monitoring durations and levels of , the 
proportion of simulations in which a significant declining trend was
detected even though the population growth rate = 1.0 (solid black line,
 = 0.05; solid gray line,  = 0.10; dashed black line,  = 0.15). 
 

errors (failing to conclude that a population is declining 
when it is) and setting  at the conventional level of 0.05 
fails to account for these differential costs.  Further, they 
propose a decision-theoretic framework for finding an 
appropriate balance between Type I and II error rates.  
Generally, as the economic value of a species increases 
relative to the cost of initiating management action in 
response to detecting a decline, the optimal value of  
increases (Field et al. 2004). 

Noting that the simulations used in this study may 
overestimate the number of years required to achieve 
power of 0.80 is important.  Unless a complete count of 
the number of individuals in a population each year is 
achieved, the variability in a time series of abundance is 
comprised of two sources:  variation in actual abundance 
over the time series (i.e., process variation) and variation 
due to the fact that abundance is estimated from a 
sample (i.e., sampling variation; Link and Nichols 1994).  
Therefore, sampling variation increases the total 
variation in a time series and, consequently, reduces the 
power to detect a trend.  Though this step is rarely 
completed in monitoring studies, sampling variation 
should be removed from a time series prior to 
conducting a trend analysis (Barker and Sauer 1992; 
Link and Nichols 1994).  We did not remove sampling 
variation from the simulated time series in this study; 
therefore, estimates of power may be biased low.  
However, we simulated the sampling of egg masses 
under low and high detectability scenarios.  Under the 
highest detectability scenario (three observers and 
probability of detection of 0.94), a complete census of 
egg masses would be achieved in most years and 
sampling variation would be low.  Estimates of power 
from these simulations are nearly identical to estimates 
from the low detectability scenarios, which suggests the 
presence of sampling variation in the simulated time 
series did not result in an overestimate of the number of 
years required to achieve high power. 

Although the conclusions in this study are based on 

simulations using counts of numbers of Wood Frog egg 
masses, the temporal variability in time series across 
many populations suggests the results may apply to other 
amphibian species and counts of other life-history stages 
(e.g., juveniles and adults).  Green (2003) calculated 
CVs for over 500 time series from populations of pond-
breeding amphibians and reported a mean CV of 0.75 
(SE = 0.037).  This value is similar to the mean CV from 
the 10 populations of Wood Frogs studied by Berven 
(1995) and to the levels of variability used in the 
simulations for this study.  Monitoring populations of 
amphibians with lower levels of temporal variability 
(e.g., stream-breeding species and terrestrial direct-
developing species; Green 2003), however, may require 
fewer numbers of years to achieve high power. 

The results of our simulations and other power 
analyses (Reed and Blaustein 1995; Hayes and Steidl 
1997) indicate that the use of counts in amphibian 
monitoring programs may suffer from low statistical 
power.  Though we didn’t address the issue in this study, 
using counts will also compromise inference, because 
trends in counts are often confounded with variation in 
detection probability (Nichols 1992; Williams et al. 
2002).  Therefore, the use of counts in herpetological 
field studies has been highly criticized, and researchers 
and managers have been encouraged to consider state 
variables for which analytical methods that account for 
detection probability are available (Pollock et al. 2002; 
Mazerolle et al. 2007).  Advances in the modeling of 
data common in amphibian monitoring programs (e.g., 
presence-absence data, call survey data, capture-
recapture data) have expanded the range of state 
variables for which estimates that account for detection 
probability can be derived.  Though the models are too 
numerous for a thorough treatment here, we provide a 
few examples with associated references and refer 
readers to a recent review of methods for estimating 
demographic parameters from herpetological field data 
by Mazerolle et al. (2007). 

For managers monitoring amphibian populations over 
small spatial scales (e.g., populations at a single 
wetland), abundance is often the preferred state variable.  
Based on the temporal variability observed in counts, 
however, abundance in many amphibian populations is 
also likely to be highly variable.  Therefore, other 
demographic parameters may be more appropriate.  In 
long-lived amphibians, annual survival probability of 
adults tends to be high and shows low temporal variation 
(Scherer et al. 2008; Bell and Pledger 2010).  Life-
history theory predicts that population growth rate, , of 
these species will be most sensitive to changes in adult 
survival probability, and many studies of species from 
various taxonomic groups, including amphibians, have 
reported support for this prediction (Biek et al. 2002; 
Pfister 1998; Sæther and Bakke 2000).  Consequently, 
survival probability of adults may be an appropriate state 
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variable for monitoring populations of long-lived 
amphibians.  While capture-recapture models for 
estimating survival probability have been in use for 
many years, advances in capture-recapture modeling 
account for common sources of bias in estimates of 
survival probability and expand the range of other 
demographic parameters that can be estimated.  For 
example, models for capture-recapture data collected 
under the robust design account for temporary 
emigration, a potential source of bias in estimates of 
survival probabilities, and provide estimates of many 
other demographic parameters, e.g., abundance and 
population growth rate (Kendall et al. 1997; Kendall and 
Bjorkland 2001). 

Managers monitoring amphibian populations over 
broad spatial scales (i.e., regional populations) also have 
a broad range of state variables from which to choose.  
The models of MacKenzie et al. (2006) can be used with 
data from repeat presence-absence surveys at wetlands to 
estimate the proportion of wetlands that are occupied by 
a species (i.e., occupancy) and model the processes that 
lead to change in occupancy across time (i.e., extinction 
and colonization).  Since its development, the original 
occupancy model of MacKenzie et al. (2002) has been 
extended to accommodate a variety of sampling 
challenges (e.g., heterogeneity in detection probability 
induced by variation in abundance; Royle and Nichols 
2003) and to estimate other state variables of interest 
(e.g., community-level occupancy; MacKenzie et al. 
2006).  Models for call survey data collected from 
regional populations have also been developed.  For 
example, the model of Royle and Link (2005) uses call 
survey data to derive an index of the distribution of 
abundances across wetlands. 
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