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Abstract.—In recent years there have been concerns over the conservation and management of freshwater turtle 
populations in the state of Texas.  In 2008 and 2009, we completed several investigations addressing anthropogenic 
impacts on freshwater turtles in the Lower Rio Grande Valley (LRGV) of Texas.  Here, we use a model selection 
approach within an information-theoretic framework and simple linear regressions to investigate effects of road density 
and number of surrounding water bodies on relative abundance and sex ratio of Red-eared Sliders (Trachemys scripta 
elegans).  We sampled 36 sites across three counties in the LRGV.  We used a GIS (Geographic Information System) and 
county road maps to estimate the total length of road within 1 km radius circular buffers centered on the midpoint of trap 
lines at each site and hydrology maps to estimate number of water bodies within the 1 km buffer.  Based on model 
selection results, the number of surrounding water bodies best explained the relative abundance of turtles, while road 
density best explained sex ratio differences.  However, predictors in both models showed little explanatory power.  Our 
failure to identify road density as a strong predictor of decreased turtle abundance gives additional weight to conclusions 
drawn from our recent work that suggested declines of Red-eared Sliders in the LRGV are due to commercial harvest 
and land use changes.  
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INTRODUCTION 

A variety of anthropogenic factors are known to 
influence semi-aquatic freshwater turtle populations.  
Arguably the most pervasive threats to freshwater turtles 
across the world are habitat loss, degradation, and 
fragmentation (Klemens 2000).  Landscape alterations 
can influence spatial and temporal habitat availability 
and quality, with significant impacts on turtle population 
dynamics (Marchand and Litvaitis 2004; Ryan et al. 
2008; DeCatanzaro and Chow-Fraser 2010).  The 
influence of roads on populations, communities, and 
ecosystems has been of interest to ecologists for nearly a 
century (e.g., Stoner 1925; Oxley et al. 1974; Foster and 
Humphrey 1995; Carr and Fahrig 2001; Langen et al. 
2009).  Forman (2000) estimated that 19% of the United 
States is ecologically affected by roads.  The affected 
area today is undoubtedly even larger because road 
networks continue to grow (e.g., the total length of 
public roads increased from 6,187,082 km in 1990 to 
6,507,834 km in 2009; U.S. Department of 
Transportation. 2011. Highway Statistics 2009. 
http://fhwa.dot.gov/policyinformation/statistics/2009/vm 
t422.cfm [Accessed 15 November 2011]). Road 
ecologists recognize that roads link together landscapes 

for humans, but fragment them for other organisms 
(Forman and Sperling 2003).  Roads can impact both 
abiotic (e.g., hydrology, erosion, and sound) and biotic 
(e.g., species behavior and survivorship) ecosystem 
parameters (Coffin 2007).  Roads can affect wildlife 
populations through direct road mortality or road 
avoidance, which in turn can alter population 
connectivity and demographics (Forman and Alexander 
1998; Trombulak and Fissell 2000).  

Turtles are thought to be particularly vulnerable to 
road mortality because of their relatively slow travel 
speeds (Ashley and Robinson 1996; Steen and Gibbs 
2004; Szerlag and McRobert 2006).  Semi-aquatic turtles 
move across landscapes in search of mates, food 
resources, nesting sites, and suitable aquatic habitats 
(Graham et al. 1996; Aresco 2005; Andrews et al. 2008; 
Roe et al. 2009, 2011).  Adults are more likely to make 
overland movements than juveniles (Gibbons et al. 
1990).  Thus, we would expect that adults are more 
susceptible to road mortality.  This is particularly 
detrimental given that population persistence for many 
freshwater turtle species is dependent upon high adult 
survivorship (Congdon et al. 1993, 1994). 

Several studies concluded that male turtles travel over 
land more than females (Morreale et al. 1984; Tuberville 
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et al. 1996), while others concluded that females moved 
more than males due to nesting migrations (Steen and 
Gibbs 2004; Aresco 2005; Gibbs and Steen 2005).  
Further, with respect to inter-pond movement, House et 
al. (2010) found no difference between the movement of 
males and females or adults and juveniles.  Despite 
equivocal conclusions about movement rates, it is 
generally accepted that female turtles are particularly 
susceptible to road mortality because they tend to be 
attracted to open nesting habitats along roads (Haxton 
2000; Steen and Gibbs 2004; Aresco 2005; Steen et al. 
2006; Szerlag and McRobert 2006).  When population-
level road impacts are detected, the typical effects 
include reduction in turtle abundances (Ryan et al. 
2008), male-biased sex ratios (Aresco 2005; Gibbs and 
Steen 2005; Patrick and Gibbs 2010), and reduction in 
mean turtle size due to adult-biased mortality (Patrick 
and Gibbs, 2010).   

Land cover and number of water bodies surrounding 
the focal area of interest can affect animal movement.  
For example, Langen et al. (2009) found that number of 
surrounding water bodies increased movement, and as a 
consequence, increased the probability of road mortality 
for amphibians.  Beaudry et al. (2008) found that 
clustered wetlands can create road mortality hotspots for 
semi-aquatic turtles due to high levels of movement 
among the wetlands. Other studies have found high 
levels of turtle movement among wetland complexes, 
with movement rates declining as wetland distance 
increased (Bowne et al. 2006; Roe et al. 2009).  Thus, if 
inter-pond movement rates are not affected by the 
presence of roads, we would expect the potential for 
road mortality to increase as number of nearby water 
bodies increases.  
  In 2008 and 2009, we investigated anthropogenic 
impacts on freshwater turtles in the Lower Rio Grande 
Valley (LRGV) of Texas, with the goal of providing 
useful information for managing freshwater turtles in the 
state (Brown et al. 2011; Brown et al. 2012).  To 
increase our understanding of anthropogenic impacts on 
freshwater turtles in the LRGV, in this study we 
investigated relationships between roads and turtle 
demographics.  We focused on the Red-eared Slider 
(Trachemys scripta elegans), the most abundant 
freshwater turtle species in the LRGV.  We tested for 
relationships between road density and sex ratio, relative 
abundance, and mean size (i.e., straight line carapace 
length).  Based on previous research, we hypothesized 
that as road density increased, sex ratios would become 
more male-biased.  We also hypothesized that total 
number of captures as well as total female captures 
would decrease with increased road density.  Finally, we 
hypothesized that the mean size of adult males and 
females would decrease as road density increased. 
 

 

MATERIALS AND METHODS 
 

Study sites.—This study was conducted in three 
counties of the LRGV of Texas: Cameron, Hidalgo, and 
Willacy.  We used a Geographic Information System 
(GIS; ArcMap 9.3.1, ESRI, Redlands, California, USA) 
to locate sites that spanned the distribution of road 
densities in the study area.    We obtained GIS layers 
containing water bodies and roads from the Texas 
Natural Resources Information System (available at 
http://www.tnris.org/).  After identifying potentially 
suitable sampling sites through GIS, we ground-truthed 
sites and sought permission to trap turtles.  We selected 
sites if they contained water and we were able to access 
them.  Further, to account for any inherent county-level 
differences that could bias results, we selected sites that 
encompassed the full distribution of road densities 
within each county and sampled 12 sites per county 
(Table 1; Fig. 1).  Ultimately, we trapped turtles at 36 
sites across the three counties, including 26 ponds and 
10 canals.   

 
Methods.—We conducted this study between May 

and July of 2009.  We trapped turtles using 76.2 cm 
diameter hoop nets baited with canned fish, fresh fish, or 
shrimp.  We standardized trapping effort at 50 trap days 
per site and checked traps daily.  For all turtles captured, 
we recorded sex, took standard measurements, and 
marked individuals for future identification.  We 
determined sex using secondary sexual characteristics.  
Male Red-eared Sliders have elongated foreclaws and an 
anal opening on the tail that extends past the edge of the 
carapace, while adult females lack these characteristics 
(Ernst and Lovich 2009).  When plastron length (PL) 
was < 100 mm, we considered the turtles to be juveniles 
(Gibbons and Greene 1990).  We measured carapace 
length and width, plastron length and width, and body 
depth using Haglof calipers accurate to 1.0 mm (Haglof, 
Madison, Mississippi, USA).  We estimated mass using 
Pesola precision scales accurate to 20 g (Pesola, Baar, 
Switzerland).  We individually marked turtles using 
carapace notches (Cagle 1939). 

We used a GIS and county road maps from 2009 
retrieved from the Topologically Integrated Geographic 
Encoding and Referencing system (TIGER) to estimate 
the road density at each site.  Distances traveled 
overland can vary greatly among semi-aquatic turtle 
species (Steen et al. 2012).  Therefore, species-specific 
movement patterns should determine the scale at which 
land must be characterized to better understand 
landscape impacts on populations (Wiens 1989).  Red-
eared Sliders are one of the more vagile semi-aquatic 
turtle species.  They can disperse great distances, with 
some nesting females traveling up to 1,400 m (Steen et 
al. 2012), but typical home-range sizes are < 1 km2 
(Schubauer et al. 1990; Ernst and Lovich 2009). 
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Therefore, we created 1 km radius circular buffers 
centered on the midpoint of the trap line at each site.  
The majority of sites were at least 2 km apart to maintain 
spatial independence of both predictor and response 
data.  However, in Willacy County the number of 
accessible sites with high road densities we found to be 
more limited.  Five sites in this county were > 1 km but 
< 2 km apart from another sampled water body, and thus 
road density data were not independent for these sites, as 
the buffers shared some roads.  Using Hawth’s analysis 
tools (available at: http://www.spatialecology.com/ 
htools/download.php), we calculated the total road 
length within each buffer which represented the road 
density near each site.  The TIGER files classified roads 
into primary interstate and state highways, secondary 
state and county highways, local neighborhood and rural 
roads, vehicular trail roads, and driveway roads.  In our 
analyses, highway roads accounted for over 80% of road 
density assessed at all sites.  We calculated road density 
as km of road length per km2, and road densities ranged 

from 0.7 km/km2 to 11.8 km/km2.  In addition, we used 
hydrology maps (available at http://datagateway.nrcs. 
usda.gov/) to estimate the number of water bodies 
surrounding each site within the 1 km buffer.  The 
number of surrounding water bodies ranged from zero to 
12.  We did not include the other land cover data in our 
analyses because the land use surrounding water bodies 
was similar across sites (urban and suburban), with the 
exception of agricultural land use around the majority of 
low road density sites.  

In each analysis we used QQ-plots to ensure the data 
were approximately normally distributed.  We used a 
model selection approach within an information-
theoretic framework to determine which factors, if any, 
influenced turtle relative abundances and sex ratios 
(Burnham and Anderson, 1998).  We ranked models by 
their Akaike Information Criterion values corrected for 
small sample size (AICC), and considered models to 
have high support when ΔAICC < 2 (Zuur et al. 2009). 

TABLE 1.  Site information for water bodies included in this investigation of road impacts on Red-eared Slider (Trachemys scripts elegans) 
population demographics in the Lower Rio Grande Valley of Texas (LRGV), including county, road density (km/km2) within a 1-km radius 
buffer, number of surrounding water bodies within the same buffer, and water body type (pond or canal). 
 

County Road density (km/km2) 
Number of 

surrounding water bodies 
Water body type 

Cameron 0.69 6 Pond 
Cameron 0.99 1 Pond 
Cameron 1.32 2 Pond 
Cameron 1.94 7 Canal 
Cameron 3.43 2 Pond 
Cameron 3.54 10 Pond 
Cameron 4.54 6 Pond 
Cameron 5.17 2 Pond 
Cameron 6.15 12 Pond 
Cameron 9.03 1 Canal 
Cameron 10.01 12 Pond 
Cameron 11.81 9 Canal 
Hidalgo 1.95 2 Canal 
Hidalgo 2.02 7 Canal 
Hidalgo 2.13 8 Pond 
Hidalgo 2.43 6 Pond 
Hidalgo 2.62 6 Pond 
Hidalgo 3.79 2 Pond 
Hidalgo 5.29 5 Pond 
Hidalgo 5.91 9 Pond 
Hidalgo 5.98 4 Pond 
Hidalgo 6.2 8 Pond 
Hidalgo 7.87 4 Canal 
Hidalgo 11.31 2 Pond 
Willacy 1.34 7 Pond 
Willacy 1.43 2 Canal 
Willacy 1.47 2 Canal 
Willacy 1.62 1 Pond 
Willacy 2.32 0 Canal 
Willacy 2.79 2 Pond 
Willacy 3.56 3 Pond 
Willacy 3.97 1 Canal 
Willacy 4.83 4 Pond 
Willacy 7.13 1 Pond 
Willacy 7.64 1 Pond 
Willacy 9.73 3 Pond 
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  We tested four models: no predictors (i.e., the null 
model), road density as a predictor, number of water 
bodies as a predictor, and both road density and number 
of water bodies as predictors (i.e., the global model).  
We calculated 85% and 95% confidence intervals (CI) 
for the model with the highest support to assess 
significance of model parameters.  Although using a 
95% CI is conventional, assessing 85% CIs is better 
suited for model selection based on AIC (Arnold 2010).  
We assessed relative abundance, sex ratio, and adult size 
relationships with respect to road density.   

We used the total number of captured turtles over the 
50 trap day period as our relative abundance metric, 
testing both total captures and total captures of adult 
females.  Unfortunately, we were unable to estimate total 

abundance at sites due to low proportions of recaptures 
(for traditional mark-recapture models), and variable 
temporal distributions of trapping effort (for N-mixture 
models).  Although the trap effort in our study was not 
homogeneously distributed among sites, Brown et al. 
(2011) found that capture efficiency was not affected by 
temporal distribution of effort in our study area.  
However, we note that because this relative abundance 
metric does not account for potential differences in 
spatial or temporal detection probability, it could 
misrepresent true differences among sites.  Sex ratio was 
expressed as the proportion of males at each site.  For 
the sex ratio analysis, we used adult captures only and 
excluded one site where we captured only a single 

 
 

FIGURE 1. Map of the Lower Rio Grande Valley of Texas (LRGV; Cameron, Hidalgo, and Willacy counties shown clockwise from bottom 
right). The map displays the road network in the study areas and the 36 trapping locations (10 canals and 26 ponds). The sites are color coded by 
number of captured turtles (red: 0-12; yellow: 13-24; green: 25-36) and shape coded by proportion of males (circle: 0-0.50; star: 0.51-1). 
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juvenile turtle.  For the adult size analyses, we computed 
the mean carapace length for each sex at each site and 
used this value as our response variable.  We did not 
include recaptures in any analyses.  We conducted all 
statistical analyses using program R 2.7.2 (The R 
Foundation for Statistical Computing, Vienna, Austria). 
 

 
RESULTS 

 
 Across the 36 sites, total captures of Red-eared 

Sliders ranged from zero to 36 and female captures 

ranged from zero to 18 (Fig. 2).  At two sites we 
captured zero turtles and at one site we captured a single 
juvenile.  Proportion of males ranged from zero to one 
among 33 sites.  For the total capture analysis, the model 
containing number of surrounding water bodies as a 
predictor had the highest support (Table 2).  For the sex 
ratio analysis, the model containing road density as a 
predictor had the highest support (Table 3; Fig 3).  The 
95% CIs included zero for both the total capture and sex 
ratio models, but the 85% CIs did not (0.086–1.381 and 
0.003–0.053, respectively), suggesting that a weak 
relationship exists.  Mean female carapace length ranged 
from 142.9 mm to 254.0 mm, and mean male length 
ranged from 118.3 mm to 227.0 mm.  Neither female 
(85% CI = -0.044–0.009) nor male (85% CI = -4.352–
0.711) size was associated with road density (Fig. 4). 

 
DISCUSSION 

 
Roads have been shown to affect freshwater turtle 

populations through habitat fragmentation and direct 
road mortality.  We studied freshwater turtle 
demographics across a road density gradient in the 
LRGV.  Our analyses indicated no strong relationships 
between road density and population demographics of 
Red-eared Sliders.  However, we found weak evidence 
of skewed sex ratios in high road density areas, which is 
consistent with previous studies (Aresco 2005; Steen and 
Gibbs 2004).  Earlier studies also reported an increase in 
movement frequency when wetlands are clustered, and 
cautioned about potential decreases in turtle abundance 
due to increased road mortality (Beaudry et al. 2008).  
Our results did not support this potential; in fact, there 

 
TABLE 2. Results from a model selection analysis using Akaike Information Criterion, corrected for small sample size (AICC), to test the 
influence of road density (km/km2) and number of water bodies within a 1 km radius buffer surrounding water bodies on number of Red-eared 
Slider (Trachemys scripta elegans) captures. The model containing only the number of water bodies as a predictor ranked highest, but with 
little support over the null model. 
 

Predictor Number of parameters AICC Delta AICC (Δi) AICC Weight (wi) 
Water 3 160.391 0.000 0.428 
Null 2 160.834 0.443 0.343 

Roads+Water 4 162.866 2.475 0.124 
Roads 3 163.219 2.828 0.104 

 
 
TABLE 3. Results from a model selection analysis using Akaike Information Criterion, corrected for small sample size (AICC), to test the 
influence of road density (km/km2) and number of water bodies within a 1 km radius buffer surrounding water bodies on sex ratio of Red-
eared Sliders (Trachemys scripta elegans). The model containing only the road density as a predictor ranked highest, but with little support 
over the null model. 
 

Predictor Number of parameters AICC Delta AICC (Δi)  AICC Weight (wi)  
Roads 3 -75.290 0.000 0.422 
Null 2 -74.922 0.367 0.351 

Roads+Water 4 -72.692 2.598 0.115 
Water 3 -72.630 2.660 0.112 

    
 
 

 
 
 

 
 

 
 
Figure 2. Total number of captured Red-eared Sliders (Trachemys 
scripta elegans) and number of female captures only, in relation to 
surrounding road density for 36 sites in the Lower Rio Grande Valley 
(LRGV) of Texas sampled in the summer of 2009.  The data indicate 
no strong relationship between captures and road density.  
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was a weak positive relationship between the number of 
surrounding water bodies and turtle abundance. 

It should be noted that the Red-eared Slider is 
probably the most adaptable freshwater turtle in the 
world; it is a species that thrives under a wide variety of 
environmental conditions (Ernst and Lovich 2009).  
Therefore, it is possible that Red-eared Sliders in the 
LRGV have modified their behavior within high road 
density areas.  Rees et al. (2009) concluded that turtles in 
suburban areas did not use terrestrial habitat as much as 
turtles in reserves, indicating potential behavioral 
adaptations that might minimize road mortality.  In 
addition, Beaudry et al. (2008) found that in the areas 
with busy roads and wetlands on both sides of the road, 
semi-aquatic turtles do not cross the roads; this could be 
additional evidence of turtles acclimating to roads but it 
is also possible that turtles that tend to cross the roads 
have already been killed and only the sedentary 
individuals are left. 

In some cases increased mortality could be offset by 
higher reproductive success, either through density-
dependent responses or due to higher quality water 
bodies.  For example, reducing the density of individuals 
in ponds resulted in increased recruitment and survival 
for Northern Snake-necked Turtles (Chelodina rugosa, 
Fordham et al. 2009).  Similarly, suburban water bodies 
appeared to be higher quality habitat than water bodies 
in nature reserves for the Eastern Long-necked Turtle 
(Chelodina longicollis) in Australia, potentially due to 
higher productivity (Roe et al. 2011).  Finally, Western 
Pond Turtle (Actinemys marmorata) populations 
inhabiting high productivity wastewater treatment plants 
in California had the greatest mean clutch sizes reported 
for the species and among the fastest growth rates and 

largest individual sizes reported (Germano 2010).  
Therefore, although roads in urban environments 
contribute to direct mortality of turtles and habitat 
fragmentation, other anthropogenic habitat modifications 
may increase habitat productivity.  

It could be argued that road density is not the best 
metric for estimating road mortality risk for turtles 
because it does not explicitly account for traffic levels. 
Studies have shown that higher traffic can result in 
increased road mortality for amphibians (Fahrig et al. 
1995; Mazerolle 2004) and semi-aquatic turtles (Langen 
et al. 2012).  Unfortunately, we were unable to obtain 
traffic or human population density information at the 
scale necessary to test this correlation in our study.  
However, the highest road density sites were located in 
heavily urbanized areas with high traffic levels.  In 
contrast, the lowest road density sites were located in 
rural agricultural areas with correspondingly low overall 
traffic levels.  Thus, although we did not specifically 
account for traffic in this study, we believe that in our 
study area this metric was appropriate, and our analyses 
should have detected road effects on turtle populations if 
strong relationships existed.   The LRGV is a unique 
region for studying anthropogenic effects on freshwater 
turtles for three reasons: substantial commercial turtle 
harvest in the 1990s (Ceballos and Fitzgerald 2004), 
rapid human population growth (i.e., the human 
population increased by 119% between 1981 and 2007 
[U.S. Census Bureau 1992, 2008]), and available historic 
survey data (Grosmaire 1977).  The results of our 
previous work (Brown et al. 2011a; Brown et al. 2012) 
indicated a significant decrease in turtle abundance in 
the LRGV and suggested that these changes were likely 
driven by commercial harvest and habitat alteration (e.g. 

 
 

 
FIGURE 3. Relationship between sex ratios and road density for Red-
Eared Sliders (Trachemys scripta elegans) at 33 sites in the Lower Rio 
Grande Valley (LRGV) of Texas in the summer of 2009. The data 
indicates a weak relationship (r2 = 0.081) exists between sex ratio and 
road density. 
 

FIGURE 4. Mean female and male carapace length of Red-eared 
Sliders (Trachemys scripta elegans) in relation to road density based 
on 34 sites in the Lower Rio Grande Valley (LRGV) of Texas 
sampled in the summer of 2009. 
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decreasing water levels at wildlife refuges to manage for 
waterfowl and shorebirds).  Because we did not find 
strong evidence for a road-effect in this study, we 
believe our results lend further support to these previous 
findings (i.e., Brown et al. 2011a; Brown et al. 2012). 
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