PATTERNS OF PREDATION AND ANTIPREDATOR BEHAVIOR IN THE AUSTRALIAN WATER DRAGON, PHYSIGNATHUS LESUEURII

J. SEAN DOODY1, PETER HARLOW2, DONNA DOUGLASS3, JASON D. THIEM4, BEN BROADHURST5, DANE TREMBATH6, JERRY OLSEN7, ESTEBAN FUENTES7, AND TONY ROSE8

1Department of Ecology and Evolutionary Biology, 569 Dabney Hall, University of Tennessee, Knoxville, Tennessee 37996-1610, USA, e-mail: jseandoody@gmail.com
2Taronga Zoo, PO Box 20, Bradleys Head Road, Mosman, New South Wales 2088, Australia
3Australian National Botanical Gardens, GPO Box 1777, Canberra, Australian Capital Territory 2601, Australia
4Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
5Parks, Conservation, and Lands, ACT Department of Territory and Municipal Services, GPO BOX 158, Canberra, Australian Capital Territory 2601, Australia
6Museum and Art Gallery of the Northern Territory, GPO Box 4646, Darwin Northern Territory 0801, Australia
7Institute for Applied Ecology, University of Canberra, Australian Capital Territory 2601, Australia
8The Australian Museum, 6 College Street, Sydney, New South Wales 2010, Australia

Abstract.—Although lizards are more diverse in arid environments, many lizard taxa have independently invaded aquatic habitats. Adaptations in aquatic lizards are often straightforward (e.g., dorsolaterally compressed tails facilitate swimming), but what made these species invade aquatic habitats in the first place? Although this question is not directly testable, one possible reason is to reduce predation risk. Here we examine the fit of a species’ antipredator behaviors to the predation risk associated with its known and suspected predators. We reviewed the literature for records of predation on the Australian Water Dragon, Physignathus lesueurii, a semi-aquatic lizard that uses aquatic escape and aquatic sleeping, but does not forage underwater. We then examined these two behaviors in relation to the patterns of predation revealed by our review. Our review identified 25 species of predators, most of which were aerial (mainly raptors) or terrestrial/arboreal (snakes, lizards, and mammals). Aquatic predators were rare. Our review supports the hypothesis that Water Dragons invaded and persist in aquatic habitats to decrease predation risk from terrestrial and aerial predators, although we cannot rule out the exploitation of an abundance of available (riparian) food as the primary reason for invading aquatic habitats. Future studies should test how well Water Dragons can thermoregulate by sleeping underwater (vs. in air), and could test the antipredator responses of Water Dragons to mock predators.

Key Words.—Agamidae; aquatic escape; aquatic lizards; aquatic sleeping; predation risk

INTRODUCTION

Predator escape is an essential, adaptive behavior in animals, and researchers have devoted considerable thought and effort toward its evolution, context, correlates, and patterns (Ydenberg and Dill 1986; Lima and Dill 1990; Lima 1993; O’Steen et al. 2002; Cooper and Frederick 2007). One way to effectively escape predators is to rapidly change microhabitats (e.g., move to thicker cover; Lima and Dill 1990; Sih 1997; Cooper 1998). Even more effective is to rapidly move to where a predator cannot, or will not, follow (e.g., a mouse retreating into a small burrow when chased by a fox). Some semi-aquatic species use water bodies as escape microhabitat (e.g., frogs, mudskippers, snakes, crocodilians, ducks, and beavers), and there is evidence that their would-be predators often do not follow (Carpenter 1952; Gregory 1979).

Although lizard species richness is highest in arid regions (Pianka and Vitt 2003), some lizard species have invaded aquatic habitats. In a review, Bauer and Jackman (2008) revealed 73 lizard species from 11 families that regularly use aquatic habitats, noting the multiple, independent evolution of aquatic or semi-aquatic species. Use of the aquatic habitat includes diving, sleeping or foraging in or under water, or running over the water surface. Accordingly, many lizards have evolved adaptations for their aquatic existence, including morphological, physiological, and behavioral traits (Dawson et al. 1977; Courtice 1985; Hsieh and Lauder 2004; Schwenk 2008; but see Leal et al. 2002).

Adaptations in aquatic lizards are often straightforward; laterally compressed tails facilitate swimming, fringed toes aid in running over the water surface, and diving evades predators. However, it is often unclear why a particular species is aquatic; that is, what made the species invade the aquatic habitat in the first place? This question is more difficult to answer in species that both forage underwater and use aquatic escape because these species may have invaded the aquatic environment to access aquatic food, or to escape predators, or both.

A few lizard species that do not forage underwater use
Herpetological Conservation and Biology

water as a refuge from predators, particularly when under immediate threat. For example, the Australian Water Dragon, Physignathus lesueurii, is seldom far from water, feeds terrestrially, and uses aquatic escape to reduce predation risk (Barrett 1931; Anonymous 1976; Retallick and Hero 1994). However, the water dragon also sleeps under water (Thompson 1993; Turner 1999; Meek and Avery 2008). Aquatic sleeping may also provide protection from terrestrial predators, but alternatively it may confer a thermal advantage because water temperatures are generally warmer than air temperatures at night (Turner 1999).

Which adaptation prompted the invasion of aquatic habitats in Water Dragons, the potential thermal advantage of aquatic sleeping, or predator avoidance via diving into water and/or aquatic sleeping? Although this question is not directly testable, we can determine the degree to which Water Dragons optimally exploit the aquatic medium by studying their thermoregulation (aquatic sleeping), or we can examine the fit of their behaviors (aquatic escape and aquatic sleeping) to predation risk associated with their known (extant) predators. Identifying actual and potential predators is critical to interpreting animal behavior (Lima and Dill 1990). Such information is often difficult to obtain for reptiles due to the paucity of direct observations of predation. However, the opportunity exists to determine the suite of predators by reviewing predation anecdotes and dietary studies of potential predators.

In this paper we address the predation risk hypothesis by reviewing the known predators of water dragons through examination of published dietary records of suspected predators (e.g., raptors) and by gleaning published and unpublished observations of predation events. We include detailed descriptions of predation events in a few cases to provide insights into predator avoidance and predator hunting tactics. We discuss how well the suite of identified and suspected predators matches the antipredator behaviors of Water Dragons, to address why they may have invaded their aquatic habitat.

Materials and Methods

The Australian Water Dragon is a large, semi-aquatic agamid lizard inhabiting riparian zones along the eastern coast of Australia (Cogger 2000). Males approach 90 cm total length and 1.0 kg; females are up to 60 cm and 0.5 kg. The Water Dragon is omnivorous but predominantly carnivorous, feeding on insects and small vertebrates (Cogger 2000). It is generally heliothermic, basking on objects close to or above water, readily using aquatic escape when threatened (Cogger 2000), and can remain submerged for up to 90 min (Courtice 1985). Individuals can also take refuge up trees, in rock crevices, burrows, or caves (Sean Doody, pers. obs.). The Water Dragon sleeps submerged underwater, partially submerged, on vegetation overhanging the water, on rocks in water, in rock crevices, or in burrows or caves (Thompson 1993; Retallick and Hero 1994; Anthony and Telford 1996; Turner 1999).

We searched published journal articles, books, and book chapters, along with unpublished reports for evidence of predation on water dragons. These sources included dietary reviews and studies of known and suspected predators of Water Dragons (e.g., raptors, foxes, cats, and water rats), and anecdotal observations of predation. Anecdotes included published notes and unpublished observations from competent herpetologists or other biologists. We supplemented this information with four detailed accounts of predation events, and one ‘partial predation’ account on Water Dragons. We then reviewed the literature on the aquatic behavior of Water Dragons, examining the fit of these behaviors to the suite of predators we assembled. In this review we do not consider predation of Water Dragon eggs.

Results

An exhaustive review of the literature revealed 25 known predators of Water Dragons (Table 1). The list was dominated by 11 species of birds, seven species of snakes, and three lizard species. Observations of predation by mammals (two species) and fish (two species) were rare. The list was dominated by 11 species of birds, seven species of snakes, and three lizard species. Observations of predation by mammals (two species) and fish (two species) were rare. Predation on water dragons was dominated by 11 species of birds, seven species of snakes, and three lizard species. Observations of predation by mammals (two species) and fish (two species) were rare. Predation on water dragons was dominated by 11 species of birds, seven species of snakes, and three lizard species. Observations of predation by mammals (two species) and fish (two species) were rare. Predation on water dragons was dominated by 11 species of birds, seven species of snakes, and three lizard species. Observations of predation by mammals (two species) and fish (two species) were rare. Predation on water dragons was dominated by 11 species of birds, seven species of snakes, and three lizard species.

At about 1230 on 8 January 2007, we observed a 1.0–1.2-m long Eastern Brown Snake (Pseudonaja textilis) with an adult Water Dragon in its mouth, in the lower reaches of the Cotter River, Australian Capital Territory, Australia (35°20′45.94″S, 148°53′22.36″E). The snake was in the stream about 1 m from the bank and clinging to a small branch attached to the shore. The Water Dragon was up to its shoulders in the mouth of the snake and was kicking and lashing its tail. After a few minutes the snake detached from the branch and drifted downstream with the dragon, seeking purchase with its tail. We are unsure if the snake successfully swallowed the dragon. At 1025 on 24 December 2007, we observed a 1.3-m male Eastern Brown Snake with an adult female Water Dragon in its mouth at the Australian National Botanic Gardens (ANBG), Canberra, Australian Capital Territory, Australia (35°16′44.19″S, 149°06′37.74″E; Fig. 1). The snake held the dragon in its mouth for approximately 10 min after being discovered, and then dragged it under a rock ledge. The snake re-appeared and commenced swallowing the lizard head-first a few minutes later. Brown snakes have been observed chasing water dragons at the ANBG on seven other occasions, and one large male chased several water dragons continuously for 2.25 h. Similarly, an Eastern Brown Snake was found swallowing a juvenile Water Dragon at ANBG in October 2004 (Greg Sattler, pers. comm.). Elsewhere, we also observed an Eastern Brown Snake chase a juvenile Water Dragon down an
embankment and into a creek, where the lizard dived to the bottom, but the snake did not follow.

On 3 March 2006 at approximately 1700, we noted a low-flying Brown Goshawk (*Accipiter fasciatus*) carrying, and then dropping, an adult female Water Dragon ca. 10 m from the water’s edge at Blue Water Holes, New South Wales, Australia (35°37′21.57″S, 148°41′15.52″E). The lizard suffered an open wound at the right shoulder and moved slowly in circles suggesting the injury would prove to be fatal. The goshawk remained perched nearby while we examined the lizard, and may have reclaimed its prey after we abandoned it.

DISCUSSION

Our review of patterns of predation supports the hypothesis that Water Dragons invaded and persist in aquatic habitats to decrease predation risk from terrestrial and aerial predators, although we cannot rule out the possibility that they initially invaded aquatic habitats primarily to exploit an abundance of available (riparian) food. Competition is thought to drive niche partitioning (Gause, 1932), but the lack of dietary information for Water Dragons for comparison with heteropatric species precludes addressing this hypothesis. Aquatic predators were rare relative to terrestrial, arboreal, and aerial predators. Aquatic sleeping appears to be secondarily evolved; in some individuals and populations dragons sleep above water (Turner 1999).

According to our review, aquatic predators of Water Dragons are uncommon; only three aquatic species of animals preyed upon water dragons: the Short-finned Eel...
The Great-billed Heron (Woollard et al. 1978; Taylor 1979; Webb et al. 1982). Dietary studies of Water Dragons were conducted outside the Water Dragon’s range. Unfortunately, dietary studies of Water Dragons did not consume water dragons in captivity (Slip and Shine 1988). Dietary studies of terrestrial mammals may not have been conducted within the Water Dragon’s range, and may have included individuals without access to rivers or streams (e.g., Bayley 1978; Catling 1988). Aerial predators were the most commonly reported predators of Water Dragons, dominated by raptors (Table 1). All three eagles, three species of owls, two species of goshawks, and the Brown Falcon (Falco berigora) consume Water Dragons (Table 1). Although some of the Water Dragons reported in dietary samples may have been juveniles, the raptors are large enough to capture and kill adult Water Dragons, and this is supported by our observation above of the Brown Goshawk mortally wounding an adult female. Probable aerial predators include four other species of large owls, two species of kites, two species of harriers, and the Red Goshawk (Erythrotiorchis radiatus). The Laughing Kookaburra (Dacelo novaeguineae) is known to take juveniles (Table 1), which also likely fall prey to the Blue-winged Kookaburra (D. leachii) and two species of currawongs (Strepera graculina and S. versicolor).

A few probable, historical predators of Water Dragons are no longer a major threat. Aboriginal people still consume lizards in northern and western Australia, and although east coast tribes rarely hunt, they undoubtedly once did consume Water Dragons (aboriginals have names for Water Dragons, including ‘Bajiri’, Djirbal people south of Cairns; ‘magil’, Jagara people of the Brisbane area; ‘Bidgawong’, Darug people of the Sydney area). The Thylacine (Thylacinus cynocephalus) was a generalist predator formerly widespread in eastern Australia (van Dyck and Strahan 2008) that could have easily consumed Water Dragons. Water Dragons possess one obvious antipredator behavior (aquatic escape) and another potential antipredator behavior (sleeping underwater), although the latter behavior may primarily reflect behavioral thermoregulation. When threatened, Water Dragons dive into the water, lie motionless on the bottom, and can remain submerged for up to 90 min (Courtice 1985).
Some individuals in some populations sleep submerged or partially submerged underwater (Turner 1999). Our review can provide insights into how predation risk shapes these two behaviors in Water Dragons but there are limitations. For example, we cannot ascertain if the predation records we collated involved sleeping dragons, although because Water Dragons are strictly diurnal, we can assume that predation by diurnal predators did not involve sleeping dragons. Our own observations of predation did not involve sleeping dragons. Although some of the known predators are mainly nocturnal (Rough-scaled Snake, *Tropidechis carinatus*; Brown Tree Snake, *Bioga irregularis*; three species of owls), the majority are diurnal, suggesting that most predation events did not involve sleeping dragons. Moreover, owls often take prey at dusk (Jerry Olsen, pers. obs.). Thus, we can hypothesize that predation risk in Water Dragons is highest during the day, when the species is active.

There are two obvious benefits to perching and foraging next to or above water. First, it would be more difficult for terrestrial predators to capture Water Dragons perched above water, compared to those on land. In many cases terrestrial animals would be precluded from reaching Water Dragons (e.g., on branches over water), except perhaps for arboreal animals, such as snakes. Second, once a dragon perched above water dives, its long submergence time (up to 1 h; Courtice 1985) probably ensures predator evasion against terrestrial and aerial predators. It is unlikely that a terrestrial, arboreal, or aerial predator would dive into the water and capture an escaping Water Dragon. This notion is supported by our observations of an Eastern Brown Snake giving up its chase on a juvenile water dragon that had dived to the bottom of a pool, and by observations of aquatic escape in frogs (Carpenter 1952; Gregory 1979). Although a terrestrially-perched dragon may find safety in a terrestrial refuge (e.g., thick cover, burrow); non-aquatic predator evasion might be less likely in that type of refugium compared to in water.

Aerial predation involving raptores preying upon lizards is widespread (Swanson 1950; Pianka and Vitt 2003). Although aquatic escape would be effective, raptores often ambush their prey by surprise, reducing the chances of (aquatic) escape. The majority of non-aerial predation of Water Dragons involved terrestrial predators. In this case, the water may not be simply a counterpart to a terrestrial cover, but rather may reflect a superior refuge from predation because although terrestrial predators would likely pursue their prey into terrestrial cover, few would follow Water Dragons into and under the water. Moreover, escaping to a burrow, crevice, tree hollow, or other refuge would generally be more difficult than diving into the water. The hunting tactics of the predator influence the probability of escape, and we hypothesize that aquatic escape is superior to ‘terrestrial escape’ when under attack by a terrestrial or aerial predator. An assumption of the ‘superior aquatic refuge’ hypothesis is that predation risk underwater is lower than predation risk above water. Our list of predators supports this assumption; aquatic predators were rare in our review compared to terrestrial and aerial predators.

Although Water Dragons use terrestrial sleeping sites (reviewed in Turner 1999), sleeping underwater may reduce predation risk to nocturnal, terrestrial predators. Alternatively, underwater sleeping may have been driven by a thermoregulation advantage because water temperatures are generally warmer than air temperatures during the night, especially in the cooler months (Turner 1999). Although water temperature averaged only 0.28°C warmer than air temperature when five water dragons sleeping under water were discovered on 19-28 February 1997 between 2034 and 2150 (Turner 1999), air temperatures would generally decline at a much faster rate, and to a greater extent, than water temperatures overnight. If underwater sleeping has an antipredator function, it may reflect the paucity of aquatic predators compared to terrestrial ones. Most records of Water Dragon predation did not involve sleeping dragons (nocturnal predators).

In summary, aquatic escape may have been the adaptive reason for the historical invasion of Water Dragons into the riparian zone, based on the terrestrial habitats of its nearest relatives and thus ancestor, and based on the apparent advantage of the behavior to an abundance of terrestrial and aerial predators. Water may be a superior escape habitat to a terrestrial refuge (burrows, trees, thick cover, or rock crevices) because of the relative ease of dropping directly and rapidly into the water. This behavior has also evolved independently in other semi-aquatic lizards and snakes (e.g., Cooper et al. 2008), making its future study within a comparative context warranted.

Acknowledgments.—We thank the following for providing predator-prey information: Chris Barnes, Stephen Debus, Esteban Fuentes, and Eric Zillmann. We thank Enzo Guarino, David Hunter, Will Osborne, Nadav Pezaro, and Mike Thompson for reviewing an earlier draft of the manuscript.

LITERATURE CITED

Doody et al.—Predation in Water Dragons.

SEAN DOODY is an Adjunct Researcher at the University of Tennessee (USA) and the University of Newcastle (Australia). He received his B.S. from Louisiana State University, his M.S. from Southeastern Louisiana University, and his Ph.D. from the University of Canberra (Australia). His current research projects include climate warming responses in animals with environmental sex determination, social behaviour in reptiles, communal nesting in reptiles and amphibians, impacts of invasive cane toads on native animals, conservation of threatened reptile species, embryo ecology in reptiles, and predator-prey relationships between crocodiles and wallabies. (Photographed by Michael Anthony).

PETER HARLOW is the Manager of the Herpetofauna Division at Taronga Zoo, Sydney, Australia, and is currently involved in conservation programs for the Fijian Crested Iguana (Brachylophus vitiensis), two Critically Endangered Australian lizard species from Christmas Island, and six Critically Endangered Australian frog species. Over his three decade-long career he has worked on ecology and conservation biology projects on a wide variety of reptile and amphibian species, mostly in Australia but also working in Southern Africa, Indonesia, USA, Canada, and Fiji. (Photographed by Joe Wasilewski).

JASON THIEM is a Ph.D. student with the Fish Ecology and Conservation Physiology Laboratory at Carleton University (Ottawa, Canada). He received his B.S. (Hons) from the University of Canberra (Australia). His thesis focuses on the effects of dams on sturgeon migration and reproductive behaviour, as well as the biomechanics and energetics of sturgeon passage through fishways. (Photographed by Keith Stamplecoskie).
DONNA DOUGLASS is currently employed by the Department of Defence, having completed a B.Sc. with the University of New South Wales, Graduate Diploma from RMIT University, and her Master’s in Applied Science (Environmental Conservation) at Charles Sturt University. Her primary area of interest is the conservation of reptiles, particularly venomous snakes. (Unknown Photographer).

BEN BROADHURST is an Aquatic Ecologist at the Institute for Applied Ecology at the University of Canberra, Australia. He received his B.Sc. from the University of Canberra. His primary research interests are spatial ecology of freshwater fish, conservation biology of Threatened fish species and assessment of Threatened fish populations. His current projects include assessment of the impacts of reservoir enlargement on threatened fish species and research into natural barriers to migration of Macquarie Perch (*Macquaria australasica*). (Photographed by Tim Kaminskas).

DANE TREMBATH is a Senior Zoological Consultant at EcOz Environmental Services and longtime Research Associate of the Museum and Art Gallery of the Northern Territory, Australia. Having had a lifelong love of reptiles, he completed his B.Sc. at James Cook University, Townsville, North Queensland and also a Master’s on the Ecology of Kriff’s River Turtle in the Townsville area. His primary research focus is on the ecology and taxonomy of snakes and turtles inhabiting tropical Northern Australia. (Photographed by Kathryn Dwyer).

JERRY OLSEN received his B.A. in Education at Washington State University in 1972 and his B.Sc. in Psychology and Zoology at Australian National University 1977. He received a Master’s in Education at the University of Canberra in 1983 and a M.S. in Ecosystems Management at the University of New England in 1989. Jerry has studied birds of prey in the Canberra, Australia region since 1975 and published some 100 papers and articles and five books on raptors. In 2002, with Susan Trost, Michael Wink, and Hedi Sauer-Güth, he discovered and named a new species in Indonesia, the Little Sumba Hawk-owl, *Ninox sumbaensis*. In 2005 he alerted researchers to the catastrophic decline in Little Eagle (*Hieraaetus morphnoides*) in the Australian Capital Territory and has since worked with ACT Parks and Conservation and the Canberra Ornithologists Group to document this decline and explain it. In 2012, his book *Australian High Country Owls*, received a Whitley Award. (Photographed by Susan Trost).

ESTEBAN FUENTES received his B.S. from UDLA in 2001, where he got *magna cum laude* for his Honours research on the human impact of the behaviour of captive felids. He received his M.S. at the University of Canberra in 2006, since then he is studying the ecology of birds of prey in the Canberra region (Australia), with special interest on their foraging patterns, guild interactions and the impact of urbanization in this group. His work also covers research on Wedge-tailed Eagle’s (*Aquila audax*) behaviour and predator-prey relationships with Macropods. His research interests include captive welfare of wild animals, re-introduction programs and mathematical models in ecology. He currently lives in Mexico. (Picture by Jerry Olsen)
ANTHONY ‘A.B.’ ROSE is a keen naturalist and has been an associate of the Australian Museum for many years. Tony is an expert at analyzing raptor pellets, picking apart each casting to determine what the owls have eaten. Tony, a retired dairy farmer living in Forster, New South Wales, Australia, has conducted many studies and published widely. He is self-taught, has a prodigious knowledge of natural history and the capacity for hours of detailed work on Boobook prey. Tony has a private collection of insects, spiders, birds, mammals, and reptiles to crosscheck against the pieces of animals that other researchers find. He can identify mammal hairs, bird beaks, legs, feathers, and spider mouthparts of the animals that owls prey upon, and from these, he can robustly estimate the minimum number of prey. (Photographed by Jerry Olsen).