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INTRODUCTION 
 

Effective species conservation, particularly for at-
risk taxa, requires accurate knowledge of geographic 
distributions.  In the case of rare species, obtaining this 
information can be challenging because species 
detection is positively associated with abundance, 
complicating efforts to obtain accurate geographic 
distribution data.  Ecological niche models (ENMs) 
and species distribution models (SDMs) have become 
increasingly important tools for refining distribution-
based data (Guisan and Zimmermann 2000; Guisan 
and Thuiller 2005).  Though now used in diverse 
applications that range from estimating species’ 
responses to environmental perturbations (Preston et 
al. 2008; Milanovich et al. 2010) to identifying high-
priority conservation areas (Hannah et al. 2007; 
Goldberg and Waits 2009), the power of these models 
lies in their ability to elucidate robust potential 
distribution estimates from occurrence data (Loiselle 
et al. 2003).  For this reason, ENMs can greatly focus 
exploratory surveys, making them a potentially useful 
tool for the study and conservation of rare amphibians. 

ENMs estimate a species’ potential distribution, or 
abiotically suitable area, in geographic space by 
modeling the existing fundamental niche of that 
species in environmental space (Peterson et al. 2011; 
Anderson 2012).  A species’ potential distribution is 

that geographic area where, in the absence of 
competitors and other negatively interacting species, 
and given unlimited dispersal ability, the abiotic 
environment is favorable to the species (Peterson et al. 
2011).  In contrast, SDMs estimate a species’ realized 
range, or occupied distributional area, in geographic 
space without first estimating the species’ fundamental 
niche in environmental space or potential distribution 
in geographic space (Peterson et al. 2011; Anderson 
2012). 

ENMs hold great potential as a conservation tool, 
but certain approaches may be poorly suited for 
facilitating exploratory amphibian surveys.  
Commonly, ENMs incorporate a standard suite of 
coarse-resolution environmental variables (e.g., 
elevation, climate-derived variables) and omit finer-
resolution landscape and habitat variables (e.g., forest 
cover, wetlands, biotic factors; Trumbo et al. 2012).  
Topography or climate may drive the geographic 
distribution of a species (Baselga et al. 2012), but 
habitat features often define a species’ presence within 
that range (Mazerolle and Villard 1999; Guerry and 
Hunter 2002; Van Buskirk 2005).  Further, amphibians 
are frequently less mobile than other vertebrates, and 
may be patchily distributed.  Thus, finer-resolution 
models may be necessary to focus survey efforts. 

While numerous ENM approaches exist, we judged 
Maximum Entropy (MAXENT) to be most suitable for 
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developing predictive distribution models for rare 
amphibians.  MAXENT is a machine-learning method 
that generates estimated distributions from presence 
data and suites of environmental variables (Phillips et  
al. 2004, 2006; Phillips and Dudík 2008).  Other 
modeling approaches, such as generalized linear 
models, generalized additive models, and classification 
and regression trees, require absence data, which are 
typically unavailable for rare amphibians.  One work-
around for this issue, as used by another ENM 
approach called GARP (Genetic Algorithm for Rule-
set Production), is to randomly select pseudoabsence 
localities from the study area (Stockwell and Peters 
1999).  However, this approach may produce false 
absences (i.e., false negatives) that may bias model 
results (Chefaoui and Lobo 2008; VanDerWal et al. 
2009).  Alternatively, MAXENT uses background data, 
or a collection of randomly selected points, to convey 

the distribution of covariates in the study area (Elith et 
al. 2011).  Moreover, MAXENT has been shown to 
perform well when compared to established modeling 
techniques (Elith et al. 2006; Ortega-Huerta and 
Peterson 2008; Tarkhnishvili et al. 2009), particularly 
when constrained by few localities (Pearson et al. 
2007; Wisz et al. 2008; Benito et al. 2009), as is 
characteristic of rare amphibians.  Not only has 
MAXENT been successfully applied to different taxa 
(Pearson et al. 2007; Rebelo and Jones 2010; Sehgal et 
al. 2011), but it was recently used to identify suitable 
habitat in Chile for the critically endangered Darwin’s 
Frog (Rhinoderma rufum) using only 19 occurrence 
localities (Bourke et al. 2012). 

Our overarching aim was to assess the utility of 
MAXENT in guiding surveys aimed at identifying 
unrecognized populations of a rare amphibian, the  

 
 

FIGURE 1.  Inset map shows study area location in California and Oregon, USA.  Klamath and Pit River hydrographic basins are indicated 
with gray shading and bold, black outline; upper and lower sub-basin boundaries delineated with dark gray lines.  Blue lines represent 
rivers and major streams.  Diagonal hatching represents areas excluded from the survey site selection process.  Due to the proximity of a 
few sites, some symbols were shifted as to not be masked by others. 
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Oregon Spotted Frog (Rana pretiosa Baird and Girard, 
1853).  Endemic to the Pacific Northwest, R. pretiosa 
historically ranged from southwestern British 
Columbia to northeastern California, but is now absent 
from 70–90% of its historic range (Hayes 1997; 
Cushman and Pearl 2007).  The species is listed as 
Vulnerable by the International Union for 
Conservation of Nature (IUCN. 2013. IUCN Red List 
of Threatened Species. Available from 
http://www.iucnredlist.org [Accessed 26 July 2013]), 
Endangered by the Committee on the Status of 
Endangered Wildlife in Canada (COSEWIC 2011), 
and threatened under the U.S. Endangered Species Act 
(U.S. Fish and Wildlife Service 2014).  Knowledge of 
R. pretiosa distribution across the southern extent of 
its geographic range, from Oregon’s Klamath Basin 
south, is extremely limited; only 17 verified localities 
are known, nine of which no longer support the 
species (Fig. 1).  The eight localities where R. pretiosa 
is extant within this area are located in Oregon 
(Cushman and Pearl 2007).  The species’ presence in 
California is known only from three historic records, 
with the most recent being from 1918 (Hayes 1997).  
Consequently, our first objective was to develop 
ENMs to estimate the potential distribution of R. 
pretiosa across the southern extent of its geographic 
range with a focus on northern California, where some 
consider this species extirpated (Pearl and Hayes 2004; 
Cushman and Pearl 2007; Pearl et al. 2009).  However, 
such an assertion is speculative because the detection 
of the species may have been constrained by limited 

knowledge of habitat under range margin conditions, 
site remoteness, or limited access to private lands.  
While the potential for the species to be present in 
California but remain undetected for 95 years seems 
unlikely, an extant population was detected in 2003 < 
12 km north of the California border (Parker 2009).  
Our second objective was to use predictions of these 
ENMs to guide exploratory surveys in an attempt to 
detect unrecognized populations.  Because R. pretiosa 
is currently known from so few localities, the 
discovery of even one previously unrecognized 
locality would be important for its conservation. 

 
MATERIALS AND METHODS 

 
Study species.—Rana pretiosa (Fig. 2) is a habitat 

specialist that requires complex, permanent warm 
water wetlands > 4 ha in size with low emergent 
vegetation (Hayes 1997; Watson et al. 2003; Pearl and 
Hayes 2004).  Wetland complexity is important 
because the species uses different aquatic habitats 
across seasons and life stages.  Shallow areas with 
stable water levels are used for egg deposition and 
larval development; somewhat deeper water is used by 
juveniles and adults during dry periods; and vegetated, 
ice-covered, shallow areas are used by juveniles and 
adults during cold wet periods (Watson et al. 2003).  
Our modeling efforts were facilitated by the species’ 
habitat associations and relatively small geographic 
distribution.  Models generated for specialists, rather 
than generalists, tend to have greater predictive power, 

 
 
FIGURE 2.  Representative photographs of one R. pretiosa female detected along the Wood River in Klamath County, Oregon, USA.  
Photographs show identifying characteristics of the species, including venter coloration (upper left), upturned eyes (lower left and center), 
and extensive webbing between digits of rear foot (upper right).  (Photographed by Luke Groff). 
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and model accuracy has been shown to improve when 
the focal species has a small geographic range 
(Segurado and Araújo 2004; Elith et al. 2006; 
McPherson and Jetz 2007). 

The geographic range of R. pretiosa overlaps with 
those of two other native ranid frog species.  Rana 
pretiosa can be readily distinguished from the Cascade 
Frog (R. cascadae) by its intense, superficial reddish-
orange venter coloration, and it can be discriminated 
from the Northern Red-legged Frog (R. aurora) by its 
lack of sharp groin mottling, more upturned eyes, and 
extensive webbing between the second, third, and 
fourth digits of its hind limbs (Dunlap 1955; 
McAllister and Leonard 1997). 

 
Study area.—Our study area encompassed the 

Klamath and Pit River hydrographic basins because all 
known populations, extirpated and extant, across the 
southern extent of the species’ geographic range occur 
within these drainages (Fig. 1).  However, we modeled 
a larger area, defined by county boundaries, so as to 
assess the potential distribution of R. pretiosa in 
adjacent hydrographic basins.  The Klamath and Pit 
systems are each partitioned into lower and upper sub-

basins that differ in landform, climate and, thus, 
suitability for R. pretiosa.  For instance, the lower sub-
basins are characterized by confined channels and 
steep grades, while the upper sub-basins are less 
confined and exhibit more gradual grades.  The upper 
sub-basins are likely more suitable for R. pretiosa, as 
their topography better facilitates the presence of large 
wetlands.  This is reflected by the distribution of the 
species’ known occurrence records (Fig. 1). 

 
Species locality data.—We used all verified R. 

pretiosa localities within the study area (n = 17) to 
generate each ENM.  Of these localities, 14 are located 
in Oregon and three are located in California.  Rana 
pretiosa is thought to be extirpated from nine 
localities; six of these are located in Oregon’s upper 
Klamath sub-basin and one is located in each of 
California’s upper Klamath, upper Pit, and lower Pit 
sub-basins (Fig. 1).  We obtained most locality data 
from surveys conducted during the 1990s (Hayes 
1994, 1997; Jennings and Hayes 1994), but also 
inspected museum collections to verify the accuracy of 
historic records.  We incorporated the localities 
representing extirpated populations not only because 

 
TABLE 1.  Environmental variables described by original spatial resolution, source, and reference.  A dash (-) indicates the source data were 
obtained in vector format; thus, it is inappropriate to describe original resolution.  Bioclimatic variables were resampled to spatially match 
the 1 arc-sec environmental variables (see Materials and Methods: model approach). 
 

Environmental variable 
Original 

resolution 
Source Reference 

Elevation 1 arc-sec National Elevation Dataset Gesch et al. 2002;

  (~30 m) http://datagateway.nrcs.usda.gov Gesch 2007 

Land cover    
 Emergent herbaceous vegetation 1 arc-sec 2001 National Land Cover Homer et al. 2004
 Woody wetland (~30 m) http://mrlc.gov  
 Open water  

 Wetland complexity    

Soil moisture - State Soil Geographic Database 
(STATSGO) 

Soil Survey Staff 2008 

  http://soildatamart.nrcs.usda.gov  
Climate    
 Annual mean temperature 30 arc-sec WorldClim bioclimatic database Hijmans et al.2005
 Mean diurnal range (~1 km) http://worldclim.org  
 Isothermality 
 Temperature seasonality 
 Maximum temperature of warmest month 
 Minimum temperature of coldest month 
 Temperature annual range
 Mean temperature of wettest quarter 
 Mean temperature of driest quarter 
 Mean temperature of warmest quarter 
 Mean temperature of coldest quarter 
 Annual precipitation 
 Precipitation of wettest month 
 Precipitation of driest month 
 Precipitation seasonality 
 Precipitation of wettest quarter 
 Precipitation of driest quarter 
 Precipitation of warmest quarter 
 Precipitation of coldest quarter    
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so few occurrence records are known within our study 
area, but also because these localities help to better 
approximate the species’ fundamental niche.  
Omission of these localities may misrepresent or 
constrain the ecological tolerances of R. pretiosa, and 
thus bias the estimate of its potential distribution 
(Peterson et al. 2011). 

 
Environmental variables.—We considered 25 

environmental variables in our ENMs that describe 
land cover, soil, topography, and climate (Table 1).  
Because R. pretiosa is almost entirely aquatic in habit 
and is thought to require complex wetlands, we 
derived four variables from the 2001 National Land 
Cover Dataset (NLCD; Homer et al. 2004) to describe 
aquatic habitat: woody wetland, emergent herbaceous 
vegetation, open water, and wetland complexity.  We 
also derived a categorical soil moisture variable from 
the State Soil Geographic Database (STATSGO2; Soil 
Survey Staff 2008) to help delineate aquatic habitats.  
We used elevation data obtained from the National 
Elevation Dataset (NED; Gesch et al. 2002; Gesch 
2007) to constrain the estimated potential distribution 
of R. pretiosa to appropriate elevations.  This species 
and R. cascadae are similar in appearance (McAllister 
and Leonard 1997), use similar habitats (Brown 1997), 
and occupy similar geographic distributions within our 
study area (Stebbins 2003).  However, R. pretiosa and 
R. cascadae populations typically segregate by 
elevation, and are known to co-occur in only three 
areas (Dunlap 1955; Green 1985).  All R. pretiosa 
localities within our study area are associated with 
elevations less than 1,605 m, whereas R. cascadae 
typically occupies higher montane habitats (Brown 
1997).  The remaining 19 variables, all bioclimatic and 
derived from the WorldClim database, describe 
temperature and precipitation.  These variables were 
interpolated from observed data and summarize the 
period 1950–2000 (Hijmans et al. 2005).  Amphibian 
distributions are known to be influenced by 
temperature and precipitation (Daniels 1992; Soares 
and Brito 2007; Qian 2010) and extreme values (e.g., 
precipitation of driest month, minimum temperature of 
coldest month) are likely more influential than value 
ranges or averages. 

We used ArcGIS 9.3 (ESRI, Redlands, California, 
USA) to format the locality data and environmental 
variables for use in MAXENT.  Using the NEAREST 
resampling algorithm, we resampled all bioclimatic 
raster layers to one arc-second (approx. 30 m) 
resolution to match that of the other variable raster 
layers.  This technique did not improve the accuracy of 
the bioclimatic layers, rather it partitioned each layer’s 
cells into smaller cells and assigned the original cell 
value to each partition.  We chose one arc-second 
resolution because R. pretiosa is associated with 
complex habitats (Pearl and Hayes 2004) and lower 
resolutions would have sacrificed NLCD detail.  The 
NLCD and STATSGO2 layers were transformed to 
better reflect the species’ habitat requirements.  

Specifically, we created three raster layers to represent 
three aquatic classes identified in the NLCD: open 
water, woody wetland, and emergent herbaceous 
vegetation.  We transformed all cells in each layer to 
express the proportion of the respective aquatic class 
within a 186 × 186 cell neighborhood.  This 
neighborhood incorporated all cells within 2.79 km of 
the focal cell, reflecting the species’ maximum 
recorded dispersal distance (Cushman and Pearl 2007).  
Further, we created a fourth layer from the NLCD to 
address wetland complexity.  Cell values in this layer 
represented the number of aquatic classes (i.e., 0–3) 
within the same 186 × 186 cell neighborhood.  Lastly, 
because R. pretiosa is exclusively associated with 
aquatic environments (McAllister and Leonard 1997), 
we reclassified the STATSGO2 layer according to 
three soil moisture classes: non-hydric, partially 
hydric, and completely hydric. 

To verify whether we could effectively include 
localities in our ENMs from which R. pretiosa had 
been extirpated, we compared the mean ( x ) and 95% 
confidence interval (CI) between localities associated 
with extirpated and extant populations for each 
continuous variable.  The soil moisture and wetland 
complexity variables represent ordinal variables and 
were excluded from this analysis.  We considered 
variation between localities associated with extirpated 
and extant populations to be insignificant if the CIs 
overlapped, whereas we judged variation between 
locality types to be significant if the CIs did not 
overlap. 

 
Model approach.—We used MAXENT version 3.3.1 

(Phillips et al. 2004, 2006) to estimate the potential 
distribution of R. pretiosa across the southern portion 
of its geographic range.  MAXENT estimates species’ 
distributions by calculating the most uniform 
distribution (i.e., maximum entropy) given the 
constraint that the expected value of each 
environmental variable matches the empirical average 
of the locality data (Phillips et al. 2006).  Importantly, 
MAXENT generates a probability distribution for 
habitat suitability (based on an index) across the study 
area (Elith et al. 2011), allowing comparison of 
suitability estimates among regions.  MAXENT can also 
estimate each variable’s contribution to the ENM via a 
jack-knife analysis of the gain.  Gain is a unitless 
statistic that assesses how well the predicted 
distribution fits the occurrence data compared to a 
uniform distribution (Elith et al. 2011). 

We generated three ENMs, which incorporated 17 
localities and a unique subset of the environmental 
variables described previously.  Following the 
approach of others, we used linear, quadratic, and 
hinge features to generate each model and maintained 
other settings as default (Phillips et al. 2004; Pearson 
et al. 2007).  These settings included the parameter 
values associated with MAXENT’S L1 regularization 
process, which determined how closely the modeled 
distributions matched the empirical mean of the  
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FIGURE 3.  Gain and percent contribution of all environmental variables used to generate the MaxFull ecological niche model (ENM).  Dark 
gray bars represent the univariate model gain calculated when each variable by itself is used to generate a model.  Light gray bars represent 
the multivariate gain calculated when all variables but the respective one is used to generate a model.  Black lines represent the estimated 
percent contribution of each environmental variable to the MaxFull ENM.  The open bar (bottom) represents the multivariate gain calculated 
with all variables. 

 

 

FIGURE 4.  Gain and percent contribution of all environmental variables used to generate the MaxCor ecological niche model (ENM).  Bars 
and lines as in Fig. 3 (except applied to MaxCor ENM). 
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locality data (Warren and Seifert 2011).  The schema 
used to name the ENMs pertains to the environmental 
variables incorporated in the respective model.  The 
MaxFull ENM incorporated all 25 environmental 
variables (Fig. 3).  Many of these variables were 
correlated; however, MAXENT is known to perform 
relatively well with correlated datasets (Elith et al. 
2011).  Next, we calculated Pearson product-moment 
correlation coefficients (r) for all pairs of quantifiable 
variables (i.e., NED, NLCD and WorldClim) using 
1,195 random cells.  When r  0.7for any variable 
pair, we discarded the variable that contributed least to 
MaxFull.  The remaining 11 uncorrelated variables 
were incorporated in the second ENM variant, 
MaxCor.  These variables included four NLCD-
derived variables, NED, STATSGO2, and five 
WorldClim variables (Fig. 4).  The third ENM variant, 
Max3%, incorporated the six variables that contributed 
> 3% to MaxFull (Fig. 5); these variables represented 
90.1% of the total contribution to MaxFull.  Next, we 
classified the logistic predictions produced by each 
ENM according to four suitability classes: unsuitable, 
low, moderate, and high.  We derived classification 
breaks for each ENM using the Jenks Natural Breaks 
(i.e., Jenks Optimization) classification method (Jenks 
1967) available in ArcGIS, and then averaged these 
break values across ENMs.  This allowed us to 
homogenize the break values so that comparisons 
could be made across ENMs.  Finally, we created a 
consensus model to combine the three ENMs, which 
identified the low, moderate, and high suitability areas 
predicted as such by at least two ENMs.  This 
technique is akin to that of the consensus or ensemble 
approach (Araújo et al. 2005; Araújo and New 2007), 
which incorporates variability from multiple models 
and identifies commonly predicted areas. 

 
Model evaluation.—We used a jack-knife 

evaluation technique (Pearson et al. 2007) to test the 
ENMs because the dataset was too small to partition 

into training and testing subsets, and each locality was 
likely to provide unique, valuable information.  This 
approach required each locality be removed once from 
the dataset and a model be generated with the 
remaining localities.  Each model was then assessed by 
its ability to classify the excluded locality as suitable 
according to two thresholds: the lowest presence 
threshold (LPT) and a fixed threshold, which was set 
at 10% (Pearson et al. 2007).  The LPT is a 
conservative approach, defining suitable habitat as that 
with probability values equal to or greater than the 
lowest probability value associated with any one 
occurrence locality.  The fixed threshold is less 
restrictive, defining suitable habitat as that with 
probability values greater than the lowest 10% of all  
probability values.  Finally, we used the 
pValueCompute program (Pearson et al. 2007) to test 
whether model predictions were superior to a random 
assignment of excluded localities.  We generated 34 
evaluation models for each ENM, with each locality 
evaluated at both thresholds. 

 
Survey effort.—We used the consensus model to 

select survey sites primarily within the Klamath and 
Pit hydrographic basins.  We excluded Lassen 
Volcanic National Park, the Thousand Lakes 
Wilderness, and portions of Klamath National Forest 
from the site selection process (Fig. 1).  Exhaustive R. 
cascadae surveys were previously conducted in these 
areas by U.S. Forest Service biologists (Karen Pope, 
pers. comm.; see also Fellers et al. 2007 and references 
therein), which would likely also have detected R. 
pretiosa if present. 

Publicly and privately owned sites were selected and 
prioritized according to the suitability predictions of 
the consensus model.  However, we attempted to focus 
our survey efforts on private lands, as they were less 
likely to have been previously surveyed.  We first 
narrowed the Klamath and Pit hydrographic basins to 
regional clusters of high and moderate suitability  

 

 
 
FIGURE 5.  Gain and percent contribution of all environmental variables used to generate the Max3% ecological niche model (ENM).  Bars 
and lines as in Fig. 3 (except applied to Max3% ENM). 
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predictions.  We then used aerial imagery, topographic 
maps, and National Wetlands Inventory (NWI) data to 
identify specific sites within these clusters that 
apparently possessed favorable R. pretiosa habitat, 
including the presence of springs, bodies of water ≥ 4 
ha, emergent vegetation, hydrologic connectivity, and 
complex aquatic systems (Germaine and Cosentino 

2004; Pearl and Hayes 2004; Cushman and Pearl 
2007).  We contacted two timber companies, 66 
private landowners, and all appropriate agencies 
asking for permission to access selected sites.  We 
received permission from both timber companies, 
eight private landowners, and all agencies. 

 
FIGURE 6.  Estimated potential distribution of R. pretiosa across northeastern California and south-central Oregon, USA produced by 
MaxFull, Max3%, MaxCor, and the consensus model.  Klamath (above) and Pit (below) River hydrographic basins indicated with bold, 
black outline; upper and lower sub-basin boundaries are delineated with gray lines.  Habitat suitability values are partitioned into four 
classes: unsuitable, low suitability, moderate suitability, and high suitability (see Materials and Methods: Model approach). 
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We investigated 44 sites between 2 April and 17 
August 2010, 21 of which were privately owned.  
Twenty-six of these sites were investigated, but not 
surveyed (n = 10) or surveyed only once (n = 16), and 
consequently rejected as unsuitable.  A site was 
considered unsuitable if at least two of the following 
criteria were observed: lack of permanent water, 
presence of predatory non-native fishes, lack of 
hydrologic connectivity and complexity, and 
inadequate size (Pearl and Hayes 2004; Chelgren et al. 
2006; Cushman and Pearl 2007).  Remaining sites (n = 
18) were each surveyed three times.  Field efforts in 
April and May 2010 were focused on egg mass 
detection and primarily comprised visual encounter 
surveys (VES) in shallow, vegetated areas.  We used 
VES and dipnet surveys to detect adults and larvae 
during the remainder of the field season.  Many sites 
were very large (> 40 ha) and, as such, we 
concentrated our efforts in suitable habitat along the 
perimeter of each site. 

 
RESULTS 

 
Model predictions.—All ENMs predicted similar 

core areas of suitable habitat, but the spatial 
distribution of each suitability class differed between 
the models (Fig. 6).  The percent of study area 
predicted per suitability class was similar between 
models (Table 2).  The greatest discrepancy occurred 
between MaxCor and the other ENMs, with MaxCor 
predicting more low suitability habitat.  Overall, 
Max3% and MaxCor produced more fragmented and 
scattered distributions than MaxFull.  For example, 
Max3% and MaxCor predicted a greater distribution of 
low and moderate suitability habitat in areas outside 
the Klamath and Pit hydrographic basins.  The Max3% 
and MaxCor models also differed in their predictions.  
For instance, MaxCor predicted a greater distribution 
of low suitability habitat near the southwest corner of 
the study area.  Moreover, MaxCor predicted a higher 
degree of suitability at areas north and northeast of the 
upper Pit sub-basin, while Max3% predicted a higher 
degree of suitability near the southeast corner of the 
study area. 

Each ENM produced predictions consistent with the 
known geographic distribution of the species.  
Approximately 73% of the MaxFull, 65% of the 
Max3%, and 63% of the MaxCor low, moderate, and 

high suitability predictions, respectively, fell within 
the Klamath and Pit hydrographic basins; by 
comparison, these drainages encompass less than 48% 
of the study area.  And while the upper Klamath and 
upper Pit sub-basins collectively represent only 29% 
of the study area, they contained 60% of the MaxFull, 
47% of the Max3%, and 46% of the MaxCor low, 
moderate, and high suitability predictions. 

 
Environmental variable contribution.—According 

to the jack-knife analyses of variable importance, the 
NLCD and STATSGO2-derived environmental 
variables most influenced all ENMs (Figs. 3–5).  
Based on each ENM’s percent contribution estimates, 
emergent herbaceous vegetation provided the most 
information to each model (> 30%), followed by open 
water (> 24%) and soil moisture (> 19%), respectively.  
This metric may be influenced by highly correlated 
environmental variables.  However, the same pattern 
of variable importance holds true when assessing 
univariate and multivariate model gain.  For each 
ENM, jack-knife analyses revealed that emergent 
herbaceous vegetation produced the highest gain when 
used in isolation (i.e., univariate model), indicating 
this variable contributed the most useful information.  
For the Max3% model, emergent herbaceous 
vegetation also reduced the gain more than any other 
variable when omitted (i.e., multivariate model), 
indicating this variable contributed the most 
information not garnered from other variables (i.e., 
low correlation; Fig. 5).  For MaxFull and MaxCor, 
soil moisture reduced the gain more than any other 
variable when omitted (Fig. 3 and 4, respectively). 

Comparisons of the variables associated with 
extirpated and extant populations revealed 
considerable similarity between the two datasets.  The 
CIs overlapped for 74% (17/23) of the continuous 
environmental variables, suggesting that variation 
between extirpated and extant populations was not 
significant for these variables.  However, the CIs were 
disjunct for the remaining six variables, all of which 
were precipitation-linked bioclimatic variables: annual 
precipitation, precipitation of wettest month, 
precipitation seasonality, precipitation of wettest 
quarter, precipitation of driest quarter, and 
precipitation of coldest quarter.  Despite this variation, 
we elected to incorporate the localities associated with 
the extirpated populations because these variables 

 
TABLE 2.  Percent of study area predicted by each ecological niche model (ENM) according to four habitat suitability classes: unsuitable, 
low suitability, moderate suitability, and high suitability (see Materials and Methods: model approach). 

ENM 
Percent of study area 

unsuit. low moderate high 

MaxFull 87.8 7.6 3.1 1.6 

Max3% 87.6 7.3 3.5 1.6 
MaxCor 83.7 10.9 3.6 1.8 

Consensus 86.6 8.5 3.2 1.7 
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contributed very little (≤ 8%) to any ENM (Figs. 3–5).  
Further, this variation is likely driven by extreme 
values associated with the two southernmost localities, 
reflecting regional precipitation differences rather than 
habitat differences between the localities associated 
with extirpated and extant populations.  Because we 
concentrated our survey efforts in northern California, 
we considered these localities valuable, as they 
represent two of California’s three verified occurrence 
records. 

 
Model evaluation.—All ENM evaluation models 

produced moderately high prediction success rates 
(i.e., low omission rates) and were statistically 
significant when compared to a random assignment of 
the excluded localities.  All ENM evaluations 
produced identical success rates, predicting 71% (P ≤ 
0.001) of localities at both the LPT and 10% fixed 
thresholds.  This corresponds with a 29% omission 
rate.  Five localities were consistently excluded by all 
ENMs at both thresholds; these localities represent 
populations that are presumed extirpated, positioned 
along the fringe of the species’ regional distribution, or 
both. 

 
Survey efforts.—While we did not find R. pretiosa 

in California, we did detect two individuals at a 
previously unrecognized site in Klamath County, 
Oregon (Fig. 1).  On 20 May 2010, we observed two 
adult females on private land along the margin of the 
upper Wood River (Fig. 2).  These individuals were 
positively identified by their venter coloration, 
upturned eyes, lack of groin mottling, and extensive 
hind limb webbing (Dunlap 1955; McAllister and 
Leonard 1997).  Prior to our study, R. pretiosa was 
known from other wetlands along the Wood River, but 
these sites are located approx. 29 river-km 
downstream (16 km Euclidean distance) from our 
detection point, well beyond the maximum dispersal 
distance recorded for the species (Cushman and Pearl 
2007). 

 
DISCUSSION 

 
We have demonstrated that ENMs generated at fine 

resolutions can be a useful tool for directing 
exploratory surveys for rare amphibian species for 
which few localities are known.  Using the consensus 
model to direct our survey efforts, we detected R. 
pretiosa at one previously unrecognized location 
within Oregon’s upper Klamath sub-basin.  This 
detection is significant because it represents the 
species’ northernmost point of occurrence in the Wood 
River.  Furthermore, R. pretiosa is currently 
recognized as extant at only nine localities within the 
Klamath hydrographic basin, and this is the 
southernmost basin known to be occupied by the 
species (Christopher Pearl, pers. comm.).  Our analysis 
revealed that variables derived to correspond with a 
species’ ecology can contribute substantially to ENM 

performance.  In particular, emergent herbaceous 
vegetation was the most influential variable in all 
ENMs, followed by open water.  These variables 
correspond with habitat characteristics thought to be 
important to sustain R. pretiosa populations.  
Specifically, emergent vegetation is used for 
oviposition, thermoregulation, and predator avoidance; 
and open water is generally associated with deep, 
permanent water bodies, which are used for 
overwintering (McAllister and White 2001; Germaine 
and Cosentino 2004; Pearl and Hayes 2004).  Our 
results also agree with Watson et al. (2003), who 
determined that 25–50% emergent vegetation was the 
most important feature of R. pretiosa microhabitat and 
a necessary requirement for the completion of the 
species’ life cycle. 

Our model set included a comprehensive (MaxFull), 
a parsimonious (Max3%), and an uncorrelated variant 
(MaxCor).  Each produced a unique distribution.  For 
example, MaxFull produced the tightest distribution, 
clustered around known localities, and predicted the 
greatest percent of moderate and high suitability 
habitat within the Klamath and Pit hydrographic 
basins, as well as within the upper Klamath and Pit 
sub-basins.  However, tightly clustered distributions 
may be disadvantageous in certain situations, such as 
when predicting range expansions or attempting to 
detect unrecognized populations.  For this reason, we 
also valued the more widely distributed predictions 
produced by Max3% and MaxCor.  Ecological niche 
models generated with fewer variables, such as 
Max3% and MaxCor, are subject to fewer constraints 
and may predict a greater area of suitable habitat 
(Phillips et al. 2006).  Thus, a trade-off exists between 
identifying potential occurrence areas and limiting 
distribution estimates to facilitate survey efforts. 

We generated the consensus model, which 
incorporated the estimate produced by each ENM, 
because we believed each model provided unique and 
potentially valuable information.  For example, the site 
at which we detected R. pretiosa was predicted as 
highly suitable by MaxFull and MaxCor, but only 
moderately suitable by Max3%.  Survey efforts based 
solely on Max3% may not have identified this 
detection site.  Further, while the spatial distribution of 
each suitability class differed among models, the 
percent of moderate and high suitability habitat varied 
by only 0.5% and 0.2%, respectively.  Thus, field 
efforts were not burdened by incorporating the more 
widely distributed predictions produced by MaxCor 
and Max3%. 

While we did not detect R. pretiosa in California, 
false-positive predictions, or sites that were predicted 
to be highly suitable but did not yield detections, 
should not be viewed as failures (Pearson et al. 2007).  
Non-detections may be attributed to factors not 
accounted for by the model, such as species detection 
and rarity, biotic interactions, geographic barriers, 
population isolation, dispersal limitations, range 
contraction, geologic history, and human influences 
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(Peterson 2001; Anderson et al. 2003).  However, the 
waterbodies investigated and surveyed in northeastern 
California did not appear suitable for R. pretiosa.  
Non-native species, hydrologic alteration, and non-
permanent hydroperiods were routinely documented; 
as a result, 59% (26/44) of our sites were rejected as 
unsuitable after the initial investigation or first survey.  
Of the 18 sites surveyed three times, nine contained 
predatory non-native fishes, eight contained non-
native American Bullfrogs (Lithobates catesbeianus), 
and six contained both.  The negative effects of these 
introduced predators on amphibian populations are 
well documented (Kats and Ferrer 2003; Pearl et al. 
2004; Eby et al. 2006).  Rana pretiosa and L. 
catesbeianus are known to successfully co-exist long-
term only in Washington’s Glenwood Valley (Joseph 
Engler and Marc Hayes, unpubl. report).  Many of the 
sites we visited were hydrologically altered (e.g., 
dammed, diked) and devoid of vegetated shallows, a 
habitat requirement of R. pretiosa (Germaine and 
Cosentino 2004).  And because R. pretiosa is primarily 
aquatic, it requires permanent water.  However, many 
sites proved to have ephemeral water sources, albeit 
with long hydroperiods, and offered no nearby 
permanent aquatic refugia. 

We recognize that temporal discrepancies exist in 
our dataset.  This is most relevant for variables that 
represent dynamic processes.  Specifically, the NLCD-
derived variables contributed 58–64% to each model 
and correspond with 2001 data, while the bioclimatic 
variables contributed 13–18% and correspond with 
1950–2000 data.  However, the oldest historic R. 
pretiosa locality record dates back to 1898.  While 
successful models have been generated with fewer 
than 17 occurrence records, predictive ability is greatly 
increased with additional records (Hernandez et al. 
2006; Pearson et al. 2007).  We considered it more 
important to incorporate all verified, known localities 
than use only temporally congruent data if, as in our 
case, no problematic asymmetry exists between the 
localities associated with extant and extirpated 
populations for variables that contribute importantly to 
the models. 

We also recognize that our decision to use 
MAXENT’S default regularization parameter values 
may have produced models that overfit the input data 
(Anderson and Raza 2010; Peterson et al. 2011; 
Warren and Seifert 2011).  This is suggested by the 
29% omission rate and the fact that the ENMs’ 
moderate and high suitability predictions are 
concentrated in areas that correspond with R. pretiosa 
localities, namely the upper Klamath and upper Pit 
sub-basins.  However, little guidance was available for 
determining the appropriate level of regularization at 
the time we generated our models (Phillips and Dudík 
2008; Warren and Seifert 2011).  Further, we 
recognize that alternate methods of evaluating logistic 
predictions across ENMs may have produced 
dissimilar consensus models.  Lastly, we recognize 
that MAXENT may produce indices not directly related 

to the parameter of interest – the probability of 
occurrence – and that formal model-based inference 
requires a random sample of presence locations (Royle 
et al. 2012).  However, our aim was not to develop a 
formally precise model, but rather one that would 
facilitate survey efforts by identifying areas most 
suitable for R. pretiosa.  We are under no illusion that 
our limited locality dataset was random, but maintain 
the belief that our approach is useful for prioritizing 
sites when conducting exploratory surveys for rare 
amphibians. 

Future R. pretiosa modeling efforts can be improved 
in several ways.  First, the NWI dataset should be 
incorporated to account for the species’ dependence on 
permanent water.  We were unable to integrate 
hydroperiod or other NWI-derived variables because, 
at the time of modeling, the dataset was not available 
in digital format across our entire study area.  Second, 
further efforts should be made to investigate privately 
owned land, as our survey efforts were hindered by 
our inability to access selected private lands.  Privately 
owned land represents approximately 42% and 23% of 
the California and Oregon portion of our study area, 
respectively, with 62–65% of the ENMs’ moderate 
and 69–72% of the ENMs’ high suitability predictions 
corresponding with private ownership.  Incongruously, 
only 12% of the private landowners we contacted 
granted survey permission.  We believe privately 
owned land represents the best opportunity for 
detecting unrecognized populations of R. pretiosa in 
our study area because such a large proportion of the 
ENMs’ moderate and high suitability predictions 
correspond with private lands and because we know of 
no other concerted effort to survey these areas.  This is 
supported by the fact that all of the > 10 new R. 
pretiosa-occupied localities discovered within the last 
five years, including the one discovered during our 
surveys, have been on private lands (Marc Hayes, 
unpubl. data).  Third, future modeling should also 
investigate the use of alternative spatial resolutions 
(e.g., 3 and 30 arc-seconds), as species-environment 
relationships can yield different distribution patterns 
when examined at different spatial scales (Wiens 
1989; Guisan and Thuiller 2005; Guisan et al. 2007; 
Austin and Van Niel 2011).  For example, models 
generated at 30 arc-seconds may produce estimates 
constrained to large wetlands, a suspected habitat 
requirement of R. pretiosa.  Fourth, in light of recent 
studies, alternative regularization parameter values 
should be evaluated, since less regularization may 
produce better potential distribution estimates and, 
thus, produce more informative models.  For example, 
Anderson and Gonzalez (2011) demonstrated that 
model performance can vary greatly according to the 
level of regularization specified, as well as be 
substantially improved with species-specific tuning.  
Warren and Seifert (2011) promote the use of 
information criterion approaches to setting 
regularization, as inappropriately complex or simple 
models may, among other things, exhibit a reduced 
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ability to infer habitat quality.  Lastly, future field 
efforts aimed at identifying new populations should 
focus on areas predicted to be highly suitable by our 
ENMs, but which we did not have the opportunity to 
investigate, either because we could not obtain survey 
permission or, in two cases, because the sites were too 
large to effectively survey given the resources 
available. 

Our modeling approach can be applied to other rare 
amphibian species or aquatic-dependent anurans or, 
with some caution, be used to better understand R. 
pretiosa distribution in other parts of its range.  Our 
results also have important conservation, habitat 
restoration, and population management implications.  
For instance, all ENMs identified similar core areas of 
potentially suitable habitat and distribution gaps; this 
information is critical to understanding R. pretiosa 
habitat use and suitability.  Further, our models could 
be used to assess the suitability of potential sites prior 
to relocation and repatriation efforts, as to avoid 
misusing limited conservation resources.  While we 
did not detect R. pretiosa in California, the potential 
remains for the species to exist within the state.  
Focused surveys should continue, with concerted 
effort made to access privately owned land. 
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