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Abstract.—We examined the daily movements and activity ranges of Green Turtles at Bahia de los Angeles, a neritic foraging 
area in the Gulf of California, Mexico.  Six turtles, ranging from 50.9 to 82.5 cm in straight carapace length were tracked 
with radio and acoustic telemetry for 24-h periods. Diel vagility ranged from 4.26 km to 15.34 km (mean = 8.21 ± 1.61 km), 
with minimum travel speeds of 0.18–0.64 km h-1.  Short-term (24-h) activity ranges were from 70 ha to 1,252 ha (mean = 458 
± 202 ha).  As the first study to establish diel vagility of green sea turtles in foraging areas of the Eastern Pacific Ocean, our 
data show that Green Turtles may traverse large distances over limited temporal durations while resident at coastal foraging 
areas and may visit multiple habitats.  Conservation efforts aimed to reduce the illegal hunting and incidental fisheries 
bycatch of Green Turtles assembled at this coastal foraging area must therefore encompass the entire coastal ecosystem 
rather than simply target a few component habitats within the area.  
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INTRODUCTION 
 
The Green Turtle (Chelonia mydas; Fig. 1) is a threatened 

species that occurs in tropical and subtropical regions throughout 
the world’s oceans.  Like most sea turtles, Green Turtles are 
migratory and use a wide range of broadly separated localities and 
habitats during their lifetime (for review see Hirth 1997).  Among 
the most important sites for Green Turtles are neritic habitats rich 
in seagrass and/or marine algae where they forage and grow until 
maturity (Musick and Limpus 1997).  Although Green Turtles 
have been the focus of research and conservation efforts 
worldwide, few data are available on their movement patterns and 
habitat requirements in these areas (Bjorndal 1997). 

Understanding the spatial requirements of Green Turtles in 
neritic foraging areas is fundamental to their conservation 
(Bjorndal 1997; Bury 2006).  Knowledge of daily movements and 
activity patterns can help elucidate the frequency and timing of 
visitation to key foraging and resting sites, and thereby pinpoint 
critical habitats (Seminoff et al. 2002; Makowski et al. 2006). 
Information on the spatial biology can also reveal variability in 

life history strategies among disparate subpopulations (Bolten 
2003).  Further, because Green Turtles spend a vast majority of 
their lives in coastal foraging and developmental habitats (Musick 
and Limpus 1997; Plotkin 2003), where susceptibility to human 
impacts is high (e.g., Groombridge and Luxmoore 1989; Campbell 
2005), understanding their movement patterns in these areas is a 
priority for ongoing conservation efforts. This information can 
guide decisions regarding the protection of foraging 
subpopulations, particularly in the Gulf of California, that 
continue to be impacted by illegal hunting and incidental bycatch 
(Gardner and Nichols 2003; Seminoff et al. 2003).  

Two fundamental aspects of the biology of Green Turtles 
resident to neritic habitats are their diel vagility and diel activity 
range, respectively defined as a measure of the distance traveled 
by a turtle over the course of one 24-h interval, and the area 
traversed by a turtle over a 24-h period (Mendonça 1983; White 
and Garrott 1990).  Because sea turtles spend 99% of their lives 
underwater, defining both of these components requires remote 
telemetry or in-water capture programs that are both labor 
intensive and expensive. Few investigations of diel movements in 
nearshore foraging areas have been undertaken as a result. 

In this study, we used radio and acoustic (ultrasonic) telemetry 
to track six Green Turtles at a temperate foraging area in the Gulf 
of California, Mexico.  The goal of this effort was to determine the 
diel vagility and diel activity ranges of Green Turtles.  To our 
knowledge, this is the first study to determine the diel movement 
patterns of Green Turtles at a coastal foraging area in the Gulf of 
California.  When combined with long-term telemetry and dietary 
studies in the area (e.g., Seminoff et al. 2002, 2006), we believe 
this information will provide an enhanced view of Green Turtle 
ecology in coastal foraging areas, thereby facilitating more 
effective conservation planning. 

 
MATERIALS AND METHODS 

 
Study site.—The study was conducted from August 1998 to 

July 1999 at Bahía de los Angeles (BLA; 28°58’ N, 113°33’ W), a 
NNE-oriented bay along the eastern coast of the Baja California 
Peninsula, México.  A series of 17 islands line the north-eastern  

FIGURE 1.  A Green Turtle (locally known as a Black Turtle, La 
Tortuga Prieta) swimming in the Gulf of California, Mexico.  Notice 
the Turtle Barnacles (Chelonibia testudinaria) adhered to this 
individual’s carapace.  Photographed by Martin Pepper. 
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portion of BLA and separate this feeding area from 
pelagic offshore waters of the central Gulf of California.  
Bahía de los Angeles is ca. 60 km2 in area, and 
characterized by strong tidal mixing and upwelling, which 
support productive marine benthic communities 
dominated by marine algae.  Habitat characteristics of 
BLA are further described in Seminoff (2000).  A small 
town also named Bahía de los Angeles is located along the 
western shores of BLA.  The local economy for this 
community of ca. 800 persons is based on artisanal 
fisheries, sport fishing, and nature tourism.  Ecotourism 
has expanded dramatically in BLA since 2000, but sea 
turtles, because of their low abundance, are still not among 
the focal species for visiting wildlife watchers. 

 
Turtle capture and size.—As part of an ongoing study of Green 

Turtle demography (Seminoff et al. 2003), the six turtles 
examined in this study were captured with entanglement nets (100 
m x 8 m, mesh size = 50 cm stretched) placed along the shallow 
perimeter (<10 m water depth) of the study area.  Straight-line 
carapace length (SCL; ± 0.1 cm) and body mass (± 1 kg) ranged 
from 50.9 cm to 82.5 cm (mean 69.8 ± 4.5 cm) and 17 kg to 70 kg 
(52.3 ± 8.7 kg), respectively.  Sex of turtles was undetermined for 
all but one turtle that was identified as a male (CM1) based on the 
presence of a differentiated tail (Wibbels 1999).  

  
Tracking.—Green Turtles were instrumented with a very high 

frequency (VHF) radio transmitter (MOD 400, Telonics Inc., 
Mesa, Arizona, USA) and an acoustic (ultrasonic) transmitter 
(V16, VEMCO Ltd., Nova Scotia, Canada; or DT96, Sonotronics, 
Tucson, Arizona, USA). We attached VHF transmitters to the 
crown of the carapace using fiberglass cloth and resin (Balazs et 
al. 1996).  The anterior and posterior ends of VHF transmitters 
were fit with fairings made with 10-minute quick-set putty to 
reduce hydrodynamic drag.  Sonic transmitters were affixed to the 
carapace posterior with electrician ‘tie-wraps’ fit through two 3-
mm diameter holes drilled in the marginal scutes (Renaud et al. 
1995).  Location of transmitters did not interfere with flipper 
movements.  Weight of transmitter packages ranged from 250– 
400 g (0.4–1.5% of turtle body mass).  Radio transmission 
frequencies ranged from 148.00 to 148.99 mHz, and acoustic 
transmissions were from 28.0 to 55.0 kHz; both frequency ranges 
are outside the hearing capacity of Green Turtles (30 Hz–1kHz, 
Ridgeway et al. 1969).   

Instrumented turtles were released at their initial capture site 

within 24 h of capture, and tracked as part of long-term home 
range study (Seminoff et al. 2002).  From 16 d to 65 d after the 
release of each turtle, we commenced continuous tracking efforts 
for one 24-h interval.  We attempted to record a minimum of one 
resighting position each hour using a VHF receiver (TR-4, 
Telonics Inc., Mesa, Arizona, USA) with a 3-element Yagi 
antenna to track VHF transmissions, and a sonic receiver (VR60, 
VEMCO Ltd., Nova Scotia, Canada) with directional hydrophone 
to monitor acoustic transmissions. A 3.7 m inflatable boat 
(Achilles, Seattle, Washington, USA) with 25-horsepower 
outboard motor was used for all tracking efforts.  To minimize 
disturbance to the turtles, each resighting coordinate was 
determined by maneuvering the tracking vessel to within 10–20 m 
of the turtle and recording the location of the tracking vessel with 
a Global Positioning System (Garmin [Europe] Ltd., Hampshire, 
United Kingdom; error range =  ± 3 m to ± 12 m).  Distances from 
telemetered turtles were determined through direct observation of 
surfacing turtles or estimated from the strength of the sonic signal 
at one-tenth gain with a directional hydrophone.  

 
Statistical analysis.—Diel vagility was determined by 

calculating the distances (km) between successive resighting 
coordinates for one 24-h interval.  To examine variability in 
movements throughout the diel cycle, we partitioned each track 
into diurnal (0500–1859 h) and nocturnal (1900–0459 h) periods. 
Vagility calculations assumed that Green Turtles followed a 
straight line between successive resighting locations, and should 
therefore be considered minimum estimates (Tremblay et al. 
2006).  Using the same set of resighting coordinates, we calculated 
short-term (24-h) activity ranges using the 100% Minimum 

TABLE 1. Summary of size, sex, and tracking duration for each of six Green 
Turtles tracked in Bahia de los Angeles. SCL = straight carapace length; U = 
turtles of undetermined sex; M = apparent male based on presence of a 
differentiated tail. 

Relocation Interval 
Begin End Turtle

ID 
SCL 
(cm) 

Weight 
(kg) Sex Date Time Date Time 

Total 
hours

CM1 77.5 70 M 08/29/98 2105 08/30/99 2114 24.15 
CM2 65.2 41 U 08/28/98 1550 08/29/98 1700 25.17 
CM3 71.4 50 U 08/15/98 2225 08/16/98 1959 22.43 
CM4 82.5 75 U 08/16/99 1139 08/17/99 1235 24.93 
CM5 50.9 17 U 08/05/99 0901 08/06/99 0906 24.00 
CM6 71.3 61 U 08/30/99 1153 08/31/99 1233 24.66 

         

 
TABLE 2.  Summary of diel vagility of six Green Turtles tracked by radio and ultrasonic telemetry in Bahía de los Angeles.  Distances are summarized 
by day (0500–1859 h) and night (1900–0459 h) periods of activity.  Diel (24-h) Activity Polygons were calculated with the MCP method (Burt 1943), 
% MCP is calculated as the ratio of the Diel Activity Polygon area and the summer MCP home range area reported in Seminoff et al. (2002a). 
 

Distance Moved (km) Minimum Travel Speed (km h-1) Diel Activity Polygon Turtle 
ID 

No. 
Resightings Day Night Total* Day Night Overall Area (ha) % MCP area 

CM1 28 11.91 3.43* 15.34 0.85 0.34 0.64 1 252 52 
CM2 28 1.73* 2.52 4.26 0.12 0.25 0.18 257 33 
CM3 20 4.49 3.08* 7.57 0.32 0.31 0.32 902 32 
CM4 40 3.04* 3.35 6.39 0.22 0.33 0.27 70 10 
CM5 40 2.86* 3.08 5.94 0.20 0.31 0.25 103 18 
CM6 43 8.90* 0.86 9.77 0.64 0.09 0.41 165 17 

Mean values: 5.49 ± 1.64 2.72 ± 0.39 8.21 ± 1.61 0.39 ± 0.12 0.27 ± 0.04 0.34 ± 0.07 458.2 ± 202.5 29.0 ± 7.2 
*Adjusted for actual proportion of the 14-h day or 10-h night interval of tracking efforts (see Table 1).  Calculations are based on constant velocity 
using the following equation: Corrected Distance = (24 / Tracked Interval (h)) * Total Track Distance 



Herpetological Conservation and Biology 1(2):81-86 
 

 83

Convex Polygon (MCP) method (Burt 1943) calculated with the 
Animal Movement Analyst Extension (Hooge and Eichenlaub 
2000) in ArcView 3.2 geographic information system (GIS) 
software (Environmental Research Systems Institute, Redlands, 
California, USA).  To model the effect of the size covariate and 
the tracking year factor on diel vagility and 24-h activity ranges, 
we used Generalized Linear Modeling (GLM; Cohen and Cohen 
1983).  Paired t-tests (α = 0.05) were used to detect differences in 
diurnal versus nocturnal vagility and travel speeds. Statistical 
analyses were carried out with JMP software (SAS 1996).  Mean 
values are followed by standard error (± 1 SE). 

 
RESULTS 

 
The 24-h tracking cycles were initiated during diurnal periods 

(0500–1859 h) for turtles CM-2, CM-4, CM-5, and CM-6; and 
during nocturnal periods (1900–0459 h) for CM-1 and CM-3 

(Table 1).  Resighting coordinates were gathered at least once per 
hour for all turtles except CM3, for which tracking efforts ceased 
after 22.44 h due to inclement weather.  
 Turtles were grouped into four categories based on horizontal 
movements (Figure 2): (1) those that remained within 3 km of the 
peninsular coast, in waters ≤ 30 m deep; (2) those whose 
movements were restricted to mid-bay waters between depths of 
20 m and 50 m; (3) those that moved between peninsular shallow 
regions and mid-bay waters ≥ 30 m deep, but did not visit insular 
habitats; and (4) those that moved among shallow peninsular 
waters, mid-bay waters, and offshore insular habitats.  Among 
these movement patterns, diel vagility ranged from 4.26 km to 
15.34 km (mean = 8.21 ± 1.61 km; Table 2).  The resultant 
minimum hourly travel speeds ranged from 0.18 km h-1 to 0.64 km 
h-1 (Table 2).  In general, Green Turtles moved throughout the diel 
cycle, although greater distances were covered during diurnal 
periods (mean = 5.49 ± 1.64 km, range = 1.73–11.91 km) versus 

CM1 CM2

CM6CM5CM4

CM3

28
º5

7’
28

º5
7’

113º32’ 113º32’ 113º32’

1 km 1 km 1 km

1 km 1 km 1 km

 
FIGURE 2. Diel vagility and activity polygons for six Green Turtles (Chelonia mydas) tracked in Bahia de los Angeles, Mexico.  Solid black lines denote 
vagility; shaded areas represent activity ranges; hatched outer line reflects Minimum Convex Polygon home range area from Seminoff et al. (2002).  
Hatched lines indicate 10-m bathymetric contours. 
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nocturnal periods (mean = 2.72 ± 0.39 km, range = 0.86–3.43 km; 
Table 1).  This disparity in diurnal versus nocturnal movements 
was particularly evident in turtles CM-1 and CM-6 that covered 
78% and 91% of their 24-h tracks, respectively, during diurnal 
periods.  Despite this variation, there was no significant difference 
in distances moved between diurnal versus nocturnal periods (t = 
1.70, df = 1, P = 0.12).  The GLM model indicated that diel 
vagility was independent of tracking year and straight carapace 
length (r2 = 0.82, P = 0.48).  When inspected separately, there is 
no evidence that these explanatory variables significantly affected 
diel vagility (Table 2).   

There was substantial variation in diel activity range size and 
shape among the six Green Turtles tracked during this study 
(Figure 2).  Diel activity ranges were from 70 ha to 1252 ha (mean 
= 458 ± 202 ha).  In general, these ranges were smallest among 
turtles whose movements were restricted to near-shore localities 
and were the largest for turtles that inhabited mid-bay waters 
exclusively, or visited insular sites.  Diel activity polygons (DAPs) 
covered 10% to 52% (mean = 29 ± 7%) of each turtles’ respective 
long-term MCP home range polygon (see Seminoff et al. 2002; 
Table 2), and were strongly correlated with the MCP area for each 
respective turtle (regression equation: MCP = 1.6989DAP + 
649.62; r2 = 0.90, P = 0.0003).  This relationship suggests that 
turtles with larger overall home ranges also tended to move greater 
distances on a daily basis.  

 
DISCUSSION 

 
This study complements a previous home range study by 

Seminoff et al. (2002) that tracked the long-term home ranges of 
all six Green Turtles examined here.  Whereas we included 20 to 
43 resighting positions per turtle for developing the 24-hr tracks 
and activity ranges, Seminoff et al. (2002) determined the turtles’ 
long-term home range sizes using 18 to 61 resighting positions, 
with ≤ 6 positions from any one 24-h period.  With a maximum of 
6 resighting coordinates from the present study also used by 
Seminoff et al. (2002), there is a low likelihood that their multiple 
use led to the significant size correlation between long-term home 
ranges and the diel activity ranges described here.  This is 
supported by the shapes of the long-term MCP home ranges and 
24-h activity ranges that are substantially different for each 
respective turtle (see Fig. 2).  

The movements of Green Turtles in Bahía de los Angeles 
highlight the importance of this region as critical feeding habitat. 
The marine algal pastures along the shallow-water margins of the 
study area are epicenters of sea turtle activity, but our data 
indicate that turtles also visit mid-bay and insular habitats.  
Although we are less certain of the activities engaged in by 
Green Turtles as they depart these nearshore marine algae 
pastures, the offshore, deeper water (> 20 m) portions of the 
study area may offer important food resources or may be 
important for resting behavior. Seminoff et al. (2006) has 
documented a number of deep water invertebrate prey in the diet 
of local Green Turtles suggesting that Green Turtles forage in 
offshore regions of Bahia de los Angeles. Although few data are 
available on resting activity by local Green Turtles, observations 
from other foraging areas support our offshore resting theory. 
Mendonça (1983) showed that Green Turtles exhibited 
predictable diel movement patterns with turtles feeding on grass 
flats in mid-morning and mid-afternoon and moving into deeper 
water during midday hours.  Green Turtles in St. Croix actively 
feed during morning and afternoon hours and rest offshore during 

mid-day periods (Ogden et al. 1983).  
Although all turtles were initially captured near/in nearshore 

algae pastures, not all turtles appeared at these sites during our 
study.  This discrepancy suggests that Green Turtle visitation 
schedules to these habitats may occur during a temporal window 
that is greater than one day.  A Green Turtle may not visit all of its 
preferred foraging and/or resting sites each day; it may require 
multiple days to access all of these habitats.  Indeed, of the turtles 
we tracked, only two demonstrated a full ‘round trip’ during the 
24-h tracking session.  Variability in daily movement patterns of 
Green Turtles is known from Florida (Mendonça 1983) and 
Hawaii (Brill et al. 1995).  Here, turtles adhere to different habitat 
visitation schedules.  

The daily vagility measurements presented here should be 
considered as indicators of movement scales rather than as 
estimators of the specific distances covered by turtles. 
Nevertheless, these data elucidate characteristic behaviors of 
Green Turtles in foraging areas, and when compared with data on 
migrating turtles, highlight the ability of Green Turtles to shift 
behavioral modes depending on the habitats occupied.  Whereas 
we derived a mean diel travel distance of 8.2 km, daily travel 
distances for Green Turtles departing the Michoacán rookery 
averaged 23.3 km (Byles et al. 1995).  Similarly, Nichols (2003) 
reported mean daily travel distances of 26.0 km for satellite-
tracked Green Turtles departing foraging sites in the Gulf of 
California en route to the Michoacán rookery.  The variability in 
daily travel distances between this and other studies supports the 
theory that the various life-history phases (e.g., open-water 
migration, coastal residency) elicit different swimming behaviors 
by Green Turtles.  

Although the travel speeds of Green Turtles residing in Bahia 
de los Angeles are less than migrating individuals from the same 
region, the daily vagility of Green Turtles in this study (8.2 km) 
was substantially greater than Green Turtles from other foraging 
areas.  For example, summer diel movements for Green Turtles in 
Florida range from 1.2 to 4.1 km (Mendonça 1983) and daily 
vagility is 0.9 to 4.9 km for Australian Green Turtles (Whiting and 
Miller 1998).  Renaud et al. (1995) reported a maximum vagility 
of 1.2 km d-1 for Green Turtles in Texas.  This disparity in 
movement scales between Green Turtle populations is also 
reflected in the 24-h activity ranges of Green Turtles in Bahia de 
los Angeles.  Whereas we found a mean of 458 ha for 24-h 
activity ranges, the mean size of short-term foraging ranges for six 
Australian Green Turtles reported by Whiting and Miller (1998) 
TABLE 3. Summary of the GLM parameter estimates fitted to Green 
Turtle diel movements and 24-h activity ranges.  The t-test significance 
level is 0.05; ns: not significant. 

Parameter Estimate SE t-ratio Prob (t) 

Diel vagility  
  (constant) –34.45 42.31 0.81 ns 
  Year –0.55 4.02 –0.14 ns 
  Straight carapace length –0.61 0.99 –0.61 ns 

24-h Activity range     
  (constant) –480.37 6396.51 –0.08 ns 
  Year –382.70 608.11 –0.63 ns 
  Straight carapace length 30.97 150.21 0.21 ns 
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was 315 ha.  Renaud et al. (1995) reported home ranges of 22 to 
311 ha for juvenile Green Turtles in south Texas.  The apparent 
differences in vagility between this and other sites perhaps relates 
to patchy distribution of food and shelter resources Bahia de los 
Angeles.  This area is characterized by steep shores and a lack of 
extensive shallow water habitats that host food resources (Bray 
and Robles 1991).  As a result, food is patchily distributed and 
separated from insular resting sites by up to 4 km (Pacheco-Ruíz 
et al. 1999).  Green Turtles may therefore need to swim greater 
distances as they move among disjunct food patches and resting 
sites. 

 
Management implications.—In the present study, seasonal 

differences in home range could not be investigated as all turtles 
were only tracked during summer (August).  However, based on 
the large distances traveled and the diversity of habitats visited 
daily by Green Turtles in Bahia de los Angeles, conservation 
efforts aimed to reduce the illegal hunting and incidental fisheries 
bycatch of this endangered marine species may require expansion 
to encompass the entire coastal ecosystem rather than a few 
component habitats within Bahia de los Angeles.    
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