
introDuCtion

Amphibians are facing worldwide population
declines, range contractions, and species
extinction.  Within the last 30 years, over 200
species have become extinct and close to one-
third of the world’s amphibians are imperiled
(IUCN, International Union for Conservation of
Nature. 2010. IUCN red list of threatened
species.  Available from http//iucnredlist.org
[Accessed 29 March 2011]; Stuart et al. 2004;
Pounds et al. 2006; see Semlitsch 2003 for a
review).  For many of these amphibian species,
it has become necessary to establish
conservation-breeding programs that assure the
survival of relict and often fragmented
populations.  These programs must ensure
genetic variation is not lost, and that
augmentation programs maintain genetic
variation of evolutionarily significant
populations.  Establishing and maintaining a
comprehensive gene bank that represents the
genetic variation of species contributes to these
goals and are among the objectives of
conservation plans to conserve threatened
amphibians (Gascon et al. 2007).  To assist with
this effort, it is essential to develop reproductive
technologies for amphibians and in particular,
field-friendly methods for cryopreservation of

sperm.  
Cryopreservation of sperm preserves genetic

material, enables the transfer of genes from
natural populations to those in conservation
breeding programs, and can maintain population
genetic variation during augmentation programs.
Cryopreservation of amphibian sperm also may
provide a practical method for holding genetic
material until researchers develop techniques to
control emerging infectious diseases and
parasites.

Collection of spermatophores is a non-invasive
method for recovering viable sperm from many
salamander species.  For example during
Ambystoma mating aggregations, males deposit
spermatophores throughout the pond substrate
with up to 81 spermatophores per courtship in A.
maculatum (Arnold 1976) and as many as 128
spermatophores per courtship event in A.
texanum (McWilliams 1992).  Thus, collecting
spermatophores and their subsequent
cryopreservation could be an effective method
for the management of threatened salamanders
in conservation breeding programs, through
perpetuating genetic variation to provide for ex
situ propagation and reintroduction efforts.   In
the present study, I investigate the applicability
of using spermatophores from the Axolotl, A.
mexicanum, to develop a practical and reliable
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method for cryopreservation of sperm from the
field.  I examined the effects of cooling rates,
thawing rates, and cryodiluents on Axolotl sperm
post-thaw viability.

materials anD methoDs

model animal.—The Axolotl is a neotenic
mole salamander belonging to the Tiger
Salamander complex (A. tigrinum) that
originated from Lake Texcoco, Mexico City,
Mexico.  Wild Axolotls are imperiled and near
extinction due to pollution, introduction of non-
native predatory fish, and urbanization (Recuero
et al. 2010), and are on the International Union
for Conservation of Nature’s annual Red List of
threatened species (IUCN. 2010. op. cit).
However, researchers use Axolotls extensively
in scientific laboratories because of their ability
to regenerate body parts, ease of breeding, and
their large embryos.  I also chose the Axolotl to
represent other endangered Ambystoma spp.
found in North America (e.g., A. bombypella, A.
amblycephalum, A. bishopi, A. cingulatum, and
A. macrodactylum croceum) as well as a range
of species that have similar breeding behavior. 

I obtained mature Axolotls (males SVL 24.5 ±
1.7 cm [mean ± 1 SD], mass 95.8 ± 14.7 g;

females SVL 22.1 ± 0.9 cm, mass 96.4 ± 11.8 g)
from the Ambystoma Genetic Stock Center at the
University of Kentucky and kept these animals
individually in holding containers and aquaria
(between 10 L to 30 L) at the Warm Springs
Regional Fisheries Center, U. S. Fish and
Wildlife Service, in Warm Springs, Georgia,
USA.  Spring water flowed through the tanks at
approximately 0.5 L/min and water temperature
varied from 15° C to 22° C depending on
ambient seasonal temperatures.  I fed Axolotls at
least three days per week with prepared diet
obtained from the Center.  

collection of spermatophores.—Salamander
spermatophores are generally conical-shaped
and consist of a cap containing sperm and a
gelatinous structure that anchors the
spermatophore to a substrate.  Doyle et al. (2011)
estimated the number of sperm per
spermatophore in A. maculatum varies widely
between 3.4 × 104 and 8.0 × 107.  To obtain
spermatophores, I placed one male and one
female in a container (46 cm length × 33 cm
width × 11.5 cm height) with approximately 15
L of water between 1600–1700.  I revisited
animals the next morning (0630), and searched
the bottom of the container for deposited
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figure 1. The four cooling rates used to freeze spermatophores of the Axolotl, Ambystoma mexicanum. Cooling rates
are: Fast (black line) = ~300° C/min; medium (red line) ~108° C/min; slow (blue line) = ~24° C/min. 



spermatophores.  At least six spermatophores
from each male were required for each
experiment; if there were fewer than six
spermatophores, I observed salamanders over
the next 4 h to see if salamanders deposited
additional spermatophores.  This ensured that a
male had one spermatophore per treatment effect
(3 × 2 experimental designs).  I placed all
spermatophores into a cryule vial (1 ml
CryoELITETM Cryogenic Vials, Wheaton
Science Products, Millville, New Jersey, USA)
and added one of two cryodiluents: 10% sucrose
solution or Simplified Amphibian Ringers
(SAR).  I added these to the 1 ml line before
cooling in experiment 1, while I added water as
a medium in experiment 2.  I did not assess the
percentage of viable sperm before
cryopreservation to ensure the structure of the
spermatophores remained intact during the
cryopreservation process.

cooling rates.—I froze and stored
spermatophores below -100° C by using a
nitrogen-vapor shipping dewar (Taylor-Wharton
model, Theodore, Alabama, USA).  These units
have an absorbent material that prevents liquid
nitrogen spills and can keep the temperature
inside the shipping cavity below -100° C.
Researchers designed cryogenic dewars for
transporting cryopreserved material; however,
fishery biologists have used these specifically for
the cryopreservation of fish sperm in the field
(Wayman et al. 1996; Tiersch et al. 1998; see
Wayman and Tiersch (2000) for cooling
procedures).  In the present study, I froze
spermatophores at four cooling rates by using a
five-channel data logger (OM-550, Omega
Engineering, Inc. Stamford, Connecticut, USA)
that had inputs from type-T thermocouples
(TMISS-040G-12, Omega).  Specifically, I
determined cooling rates by using the five-
channel data logger, thermocouples, and cryule
vials to record cooling rates as temperature
change in a nitrogen-vapor shipping dewar
through time.  I used four methods to obtain
these cooling rates: (1) Cryule vials were
dropped directly to the bottom of the dewar for
fast cooling of ~300° C/min; (2) cryule vials in
goblets were placed into the dewar for a medium
cooling rate of ~108° C/min; (3) visotubes,
goblets, and canisters together were used to
obtain a slow rate of ~24° C/min; and (4) foam
insulation, visotubes, goblets, and canisters were
used for the slowest cooling rate of ~10° C/min

(Fig. 1). 

sperm viability.—I assessed the viability of
thawed sperm by using a Live/Dead Sperm
Viability Kit (L-7011, Molecular Probes, Inc.
Grand Island, New York, USA).  This kit uses
the fluorescent stains SYBR-14 and propidium
iodide (PI) to assess membrane integrity and
sperm cell viability.  The membrane-permeant
stain (SYBR-14) binds DNA of intact sperm and
fluoresce a bright green, while the PI is a
membrane-impermeant stain that binds DNA in
sperm with leaky membranes, and fluoresce red
(Garner et al. 1997; Fig. 2).  

Cryopreserved spermatophores were thawed
and broken up in the cryule vials using pipette
tips.  I placed five µL of the sperm on a
microscope slide, added 2 µL of both dyes, and
viewed this under a microscope to assay the
percentage of live intact sperm.  I repeated this
process several times per spermatophore to
obtain a reliable percentage of live intact sperm
(with a minimum of 100 sperm counted).

experiment one.—I examined the effects of
cooling rate and cryodiluents on post-thaw
sperm viability in a 3 × 2 factorial design.  I used
either a fast or slow cooling rate (see above,
Figure 1) and I added either water or one of two
diluents: a 10% sucrose solution at 341
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figure 2. Photograph of sperm cells from the Axolotl,
Ambystoma mexicanum after cryopreservation in
spermatophores. Intact sperm cells fluoresce a bright
green while damaged fluoresce red. (Photographed by
Chester R. Figiel, Jr.). 



mOsmol/kg; and SAR (consisting of 113.0 mM
NaCl, 1 mM CaCl2, 2.0 mM KCl, 3.6 mM
NaHCO3), at 287 mOsmol/kg) .  Researchers
have utilized both diluents for sperm storage and
cryopreservation in other studies (Browne et al
1998, 2001; Peng et al. 2011).  The experiment
began with six pair of Axolotls (male/female);
however, only four males produced enough
spermatophores to complete the study design.  I
assigned six spermatophores from each male (of
four males) without bias to each of the six
treatments: Sucrose-Fast, Sucrose-Slow, SAR-
Fast, SAR-Slow, Control-Fast, Control-Slow.  I
froze spermatophores following cooling
protocols and kept in the dewar below -100° C.
After 48 hours, I thawed frozen spermatophores
one at a time by placing cryule vials in a 25° C
water bath for 5 minutes.  I obtained the percent
of viable sperm as described above.  

experiment two.—I examined the effects of
cooling rate (medium, slow and slowest; Fig. 1)
and thawing method (High thawing rate, Low
thawing rate) on post-thaw sperm viability in a
3 × 2 factorial design.  To obtain thawing rates,
I placed vials containing spermatophores in a
water bath at 25° C for 5 min (High thawing rate)
or in a water bath at 40° C for 3.3 min (Low
thawing rate).  Four pair of Axolotls were placed
together (male/female, different individuals from
experiment 1); however, only three males
produced the needed spermatophores to
complete the study design.  I assigned six
spermatophores from a male (three males) to one
of the six treatments: Medium cooling rate +
High thawing rate, Medium cooling rate + Low
thawing rate, Slow cooling rate + High thawing
rate, Slow cooling rate + Low thawing rate,
Slowest cooling rate + High thawing rate, and
Slowest cooling rate + Low thawing rate.  I
obtained the percent of viable sperm (as

described above) after cooling spermatophores
below -100° C for at least three days.  

statistical analysis.—The percent of viable
sperm (the percent of green/green + red sperm)
were arcsine square root transformed to
minimize the heterogeneity of variances among
treatments (Snedecor and Cochran 1989) and
data were analyzed by a two-way ANOVA for
the main effects and interactions in both
experiments (P = 0.05 level of significance).  No
differences were found among the males in
sperm viability in experiment one (df = 3, F =
1.076685, P > 0.05); or experiment two (df = 2,
F = 2.846558, P > 0.05); thus, males were used
as replicates (n = 4 males in experiment one; n =
3 males in experiment two).  In experiment one,
male 2 in the control-slow treatment and male 5
in the SAR-fast treatment had zero sperm in the
cryule vial, and thus were not included in the
analysis.  I used the S-Plus 7.0.6 software
package (Insightful Corporation, Seattle,
Washington) for all analyses.  

results

experiment one.—Post-thaw sperm viability
overall was 64.7% ± 29.5% (mean ± 1 SD).
There were no significant effects of cryodiluents,
cooling rate, or the interaction of cryodiluent and
cooling rates on sperm viability (Table 1).  There
were no significant statistical differences
between sperm viability in the slow cooling rate
(74.8% ± 25.0%) compared to the fast cooling
rate (55% ± 31.3%).  Further, spermatophores
frozen with spring water had similar percent
viability (75.0% ± 27.1%) compared to those
frozen with SAR (68.3% ± 30.6%) or those
frozen with 10% sucrose (52.5% ± 29.9%).

experiment two.—Neither cooling rate or
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table 1. Summary of ANOVA on the post-thaw percent of the viable sperm of Ambystoma mexicanum after
cryopreservation using three cryodiluents (10% sucrose, simplified amphibian ringers solution, and spring water) and
cooling at two rates (~300° C/min, ~24° C/min).

Source of Variation df MS F P
Cooling rate 2 0.0066 0.466 0.6386
Thawing rate 1 0.0049 0.349 0.5654
Cooling × thawing rate 2 0.0340 2.403 0.1325
Error 12 0.0141



thawing rate or the interaction effects of cooling
and thawing rates significantly influenced the
percentage of post-thaw viable sperm (Table 2).
Sperm post-thaw viability over all treatments
was 86.7% ± 8.0%.  Sperm viability did not
differ significantly when cooled at the slowest
rate (89.2% ± 8.0%) compared to the slow
(85.8% ± 7.4%) and medium rates (85.0% ±
9.5%).  Further, thawing rate did not influence
the percent of viable sperm (25° C for 5 minutes
= 85.6% ± 8.5%; 40° C for 3.3 min = 87.8% ±
7.9%).

DisCussion

This is the first study to report methods for the
cryopreservation of sperm in salamander
spermatophores.  To date, cryopreservation of
amphibian sperm is limited to less than 50
anuran species, and few (if any) caecilians or
caudata species (Browne and Figiel 2011;
Browne et al. 2011).  Sperm cryopreservation of
salamander species that fertilize externally has
been reported only for the Chinese Giant
Salamander, Andrias davidianus (Peng et al.
2011), and for North American Hellbenders,
Cryptobranchus alleganiensis alleganiensis and
C. a bishopi (Unger et al. 2013).  Sperm
cryopreservation protocols on species that do not
produce spermatophores (e.g.,
Cryptobranchidae) are similar to techniques used
for anuran species (see review Browne and
Figiel for review 2011) and differ from
cryopreservation techniques with urodeles that
have internal fertilization (e.g., Ambystoma spp.)
mainly because of differences in sperm
physiology and spermatophore morphology.
Often sperm can only be obtained from
salamanders or other amphibians through the
excision and maceration of testes; however,
inducing individuals to produce sperm through

hormone injection has been successful (Xiao et
al 2006; Mansour et al. 2010; Shishova et al.
2011) and may prove necessary especially when
working with critically endangered species.  The
techniques of this study avoided the need for
testes sampling or hormonal induction with the
Axolotl and may be extended to other internally
fertilizing salamanders. 

In the present study, spermatophores frozen at
slower rates of ~24° C/min and ~10° C/min
resulted in elevated post-thaw sperm viability
although not significantly so.  Other studies
found that a continuous linear cooling rate of
~10° C/min was the best cooling rate for the
anurans Xenopus laevis and X. tropicalis
(Sargent and Mohun 2005), whereas a stepped
cooling rate of less than ~5° C/min lead to
moderate to high sperm motility and fertility in
Bufo marinus (Browne et al. 1998).
Additionally, Mansour et al. (2009, 2010) found
that a cooling rate between ~5 and ~7° C/min
produced greater success for sperm of X. laevis
and Rana temporaria.  In contrast, with
Cryptobranchus sperm, rapid cooling results in
the recovery of high rates of motility (Robert
Browne, pers. com.).

The rapid thawing of cells after
cryopreservation can minimize the damage
associated with a longer period of
recrystalization.  I found no difference in the
effects of thawing rates on Axolotl post-thaw
sperm viability.  Few amphibian
cryopreservation studies have examined the
effect of thawing rates (but see Browne et al.
1998, Hopkins and Herr 2004, Sargent and
Mohun 2005) with none finding a significant
influence on sperm quality.  

The unique aspects of this study,
cryopreserving sperm within spermatophores,
created a unique cooling and thawing process
and likely affected the ability of water and
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table 2. Summary of ANOVA on the post-thaw percent of the viable sperm of Ambystoma mexicanum after
cryopreservaqtion using three cryodiluents (10% sucrose, simplified amphibian ringers solution, and spring water) and
cooling at two rates (~300º C/min, 24º C/min). 

Source of Variation df MS F P

Cryodiluent 2 0.1039 1.472 0.2589

Cooling rate 1 0.2788 3.982 0.0633

Cryodiluent × cooling rate 2 0.1511 2.1580 0.1480

Error 16 0.0700



cryodiluents to enter sperm cells (as it does in
the Cryptobranchids; Unger et al. 2013).  Post-
thaw sperm viability was not influenced by
cryodiluents potentially because the internal
environment of the spermatophore provides
protection and prevents the degradation of
sperm.  The sperm cap of spermatophores is
composed of a mass of nebulous material in
which the sperm are imbedded (Organ and
Lowenthal 1963) and are surrounded by a
membrane-like structure containing fibrous
material and cytoplasmic droplets (Zalisko et al.
1984).  These components may bind or retain
diluents.  Presently, it is not known if permeating
(e.g., glycerol, dimethyl sulfoxide [Browne et al.
1998]; dimethyformamide [Shishova et al.
2011]) or non-permeating cryoprotectants (e.g.,
sugars; Browne et al. 2002) can penetrate the
sperm cap or whether compounds found in the
sperm cap improve sperm cryopreservation in
Axolotl spermatophore, those of other
Ambystoma species, or in other internally
fertilizing salamanders.  Understanding the
effects of cooling and thawing (e.g., the
formation of ice crystals, cell dehydration,
damage to cell integrity), on spermatophores and
cells within, would prove useful for the
development of protocols for field use.

A priority in amphibian management and
recovery efforts is the development of non-
invasive methods for the collection and storage
of gametes (Gascon et al. 2007; Browne et al.
2011).  A multidisciplinary approach that
includes sperm cryopreservation should assist in
the production of salamanders with suitable
genetic variation for augmentation programs and
in conservation breeding populations.  A model
species such as the Axolotl that can represent a
range of amphibians may prove useful for
developing field cryopreservation protocols for
critically imperiled species.  Further work on the
capability of cryopreserved spermatophores to
produce healthy offspring is needed in that
regard.  
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